Contents
 - Index
INNER PRODUCTS
 COLS - Syntax: col(<mat>,<column list>).  Extracts specified rows from <mat> into new dataset.  <column list> is a series of row numbers. Example:
 firsttwo = col(davis,1 2)
 DIAG - Syntax: diag(<vecmat>). Converst a column vector into a diagonal matrix.  If a dataset with more than one column is provided as input, it uses the first column. Example:
 newsquare = diag(campnet)
 TOTAL - Syntax: tot(<mat1>,[R½C½L] [R½C½L]).  Adds values of  <mat1>, with optional breakout by one or two dimensions.  Examples:
 rowsums = tot(davis rows)
 colsums = total(davis cols)
 nties = tot(davis)
 allrels = tot(newcomb rows cols)
 
 The last example totals all matrices contained in the newcomb dataset to get a single matrix.  In other work, it takes a 3-dimensional table (rows, columns and matrices) and aggregates across matrices to obtain a table with just rows and columns.
 TRANSPOSE - Syntax: transp(<mat> [<dim><dim>]).  Exchanges any two dimensions of a dataset.  If no dimensions are given, rows and columns are assumed.  Examples:
 
 tdavis = transp(davis)
 cent2 = transp(cent cols levs)
 WAVERAGE - Syntax: wavg(<mat1>,[R½C½L] [R½C½L]). Average values of <mat1>, with optional breakout by one or two dimensions.  Examples:
   
 rowmeans = wavg(davis rows)
 colmeans = wavg(davis cols)
 density = wavg(davis)
 avgtie = wavg(newcomb rows cols)
 The last example totals all matrices contained in the newcomb dataset to get a single matrix.  In other words, it takes a 3-dimensional table (rows, columns and matrices) and aggregates across matrices to obtain a table with just rows and columns.
 WMAXIMUM - Syntax: wmax(<mat1> [r½c½1] [r½c½1]).  Takes the largest value of within a dataset, optionally broken out by one or more dimensions.  Example:
 
 rowmax = wmax(ron1 rows)
 matmax = wmax(krack lev)
 WMINIMUM - Syntax: wmin(<mat1> [r½c½1] [r½c½1]).  Takes the smallest value of within a dataset, optionally broken out by one or more dimensions.  Example:
 rowmin = wmin(ron1 rows)
 matmin = wmin(krack lev)
 FURTHER INFORMATION
 Uniary Operations
 Binary operations
 Procedures
 Matrix Algebra