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Techniques is a regular column devoted to techniques of data construction, management, and analysis. Con​tributions are appreciated.

Background. Suppose we have an anti​symmetric matrix in which xij records the percentage of times that i "beat" j in a contest, and xji records the proportion of times that j beat i. By definition, xij+xji equals a constant. We could be talking about sports teams playing games, animals in dominance en​counters, or products in consumer taste tests. For example, in an experiment reported by Guilford (1954),  respondents were shown pairs of vegetables and asked to choose the one they preferred. The result was a vege​table-by-vegetable matrix, shown in Table 1, in which xij gives the percentage of respondents who chose vegetable i over vegetable j. Making the assumption that there exists a common preference ordering across all respondents (i.e. they are all drawn from the same "culture"), the question is whether we can uncover that latent ordering by examining the pattern of frequencies in the table. There are many approaches to this question. In this article, I will give one very simple approach based on ordinary multi​dimen​sional scaling.

We begin by considering the process that generates the observed table of frequencies. What would we expect to happen if two vege​tables were equally preferred? Since respon​dents are forced to make a choice, we would expect that in the long run, about half would choose one and half would choose the other. Consequently, xij-xji should be about zero. What if two vegetables are at opposite ends of the preference spectrum? Then one of them will always beat the other, and so the absolute value of xij-xji will approach its maximum value, which is xij+xji. This means, then, that the absolute difference |xij-xji| may be used as an indicator of the interval between the vegetables on the latent preference scale. 

Table 1. Vegetable preferences.
	
	Tu
	Ca
	Be
	As
	Ca
	Sp
	St
	Pe
	Co

	Turnip
	  
	82
	77
	81
	88
	89
	90
	90
	93

	Cabbage
	18
	
	60
	72
	74
	74
	81
	85
	86

	Beets
	23
	40
	
	56
	74
	68
	85
	80
	82

	Asparagus
	19
	28
	44
	  
	56
	59
	68
	60
	73

	Carrot
	12
	26
	26
	44
	
	49
	57
	71
	76

	Spinach
	11
	26
	32
	41
	51
	
	63
	68
	63

	St. Bean
	10
	19
	16
	32
	43
	37
	
	53
	64

	Peas
	11
	16
	20
	40
	29
	32
	47
	
	63

	Corn
	7
	14
	18
	27
	24
	37
	36
	37
	


Note, however, that if preference truly is a unidimensional scale, we do not have just one estimate of each interval. For example, consider the ordering of objects (labeled "A" through "E") in the line below. The interval between items B and C may be initially estimated from |xBC-xCB| but it can also be calculated as the difference between the A-C and A-B intervals, as well as the difference between the B-D and C-D intervals, and so on. 

 A----------B------C-----------D---------------E

This redundancy can be put to use. For one thing, if there are missing cells in our data matrix, it seems likely that we can still recover the underlying scale. For another, if our data are subject to random error, we can use this implicit system of equations to average out the errors and get a better estimate of the underlying scale positions

In other words, we would like to find a set of points (corresponding to our items) in 1-dimensional euclidean space such that dis​tances between the items correspond as close​ly as possible to a set of input proxi​mities defined by |xij-xji| for all items. This is precisely the kind of problem that multi​dimensional scaling is designed  to solve. 

How to do it.  The first step is to construct a symmetric difference matrix P from a raw frequency matrix X by setting pij = |xij-xji|/(xij+xji). Then submit P to a standard multi​dimensional scaling program such as found in SPSS or UCINET (Borgatti et al. 1992). When running the program it is important to remem​ber to specify that a 1-dimen​sional solution is desired, and that the input matrix P is a distance matrix rather than a similarity matrix. The program will then output the coord​inates of the points in 1-space; these coordinates are then interpreted as preference scale scores. For the vegetable data, the scale scores using non-metric scaling are given in Table 2. 

Table 2. Scale scores for vegetables.
	Turnip:
-2.19

Cabbage:
-.78

Beets:
-.59

Asparagus:
-.04

Carrots:
.32
	Spinach:
.29

Str. Bean:
.82

Peas:
.87

Corn:
1.29





Note that if the stress obtained by the program is excessive, we cannot interpret the 1-dimen​sional coordinates as preference scores. High stress means that the data are not consis​tent with a single underlying dimension. In our vegetable example, the stress was high but acceptable, but if not the reason could have been that the seemingly simple construct "preference for vegetables" was not a uni​dimen​sional concept, but rather had multiple aspects (e.g., taste, color, texture, cost, nutri​tional value) which were differentially evoked by different pairs of vegetables. 

Exchange networks.  Borgatti and Everett (1992:290) deplore that fact that experimental exchange theorists assume power to be a monadic attribute of network positions rather than a dyadic attribute of pairs of nodes. Emerson (1962) had made it a point to note that power is a relation between pairs of actors, not a generalized attribute of the actor as a whole. Yet in some studies (Cook et al 1983; Markovsky et al 1988) the points earned by actors are averaged across all ex​changes to yield a single value for each actor. If Emerson was right, this averaging is inap​propriate. 

We can use the scaling method described above to investigate whether the pairwise ex​change rates obtained in the experiments are consistent with an underlying ordering of actors along a unidimen​sional power con​tinuum, as assumed by modern researchers. Consider the following 6-node graph: 

[image: image1.wmf]
John Skvoretz and David Willer have tested this network in the labora​tory.
 Preliminary results are given in Table 3. 

Table 3. 
Avg. points received by row actor.

	
	A
	B
	C
	D
	E
	F

	A
	
	10.31
	
	
	
	

	B 
	13.69
	
	11.54
	
	
	

	C
	
	12.46
	
	12.00
	
	12.19

	D
	
	
	12.00
	
	14.20
	13.01

	E
	
	
	
	9.80
	
	

	F
	
	
	11.81
	10.99
	
	


The table contains missing values for all pairs of actors that, by experimental design, were not allowed to exchange (e.g., A and C). Due the pattern of missing values (e.g., A and E have only data point), a unique scaling of all points is not possible, although the core nodes C, D and F will be uniquely ordered.

Using metric MDS, the best 1-dimensional scaling has Kruskal stress equal to 0.185, which is high for so few data. This suggests that, contrary to the assumptions of Cook et al. and Markovsky et al., power cannot be reduced to a nodal attribute. However, the conclusion is not unequivocal since it is unclear whether the small differences in observed exchange rates can be attributed to sampling and meas​ure​​ment error. According to preliminary statistical tests by Skvoretz and Willer, it is possible that only the A-B and D-E rates are significantly different from zero. If so, the monadic assumption is supported. 
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� I am grateful to Skvoretz and Willer for sharing these yet-to-be-published data. Important note: these are preliminary results based on a small sample.





