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Glossary 
 
2-Mode Matrix. A (2-dimensional) matrix is said to be 2-mode if the rows and columns 
index different sets of entities (e.g., the rows might correspond to persons while the 
columns correspond to organizations). In contrast, a matrix is 1-mode if the rows and 
columns refer to the same set of entities, such as a city-by-city matrix if distances. 
 
Blockmodel. A blockmodel is a partitioning of the cells of a matrix into blocks that is 
induced by the partitioning the rows and columns into classes and sorting the matrix such 
that rows (and columns) that belong to the same class are next to each other. More 
specifically, two matrix cells xij and xmp are in the same block if class(i) = class(m) and 
class(j) = class(p). 
 
Centrality. A family of concepts of characterizing the structural importance of a node’s 
position in a network. 
 
Graph Cohesion. A family of concepts characterizing the extent of connectedness of a 
graph, such as density (the proportion of pairs of nodes that have ties), or average path 
distance.  
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Multidimensional Scaling (MDS). A method of locating points in space such that 
Euclidean distances between the points correspond to a matrix of input 
similarities/distances. Used to provide visual representations of 1-mode matrices such as 
correlation matrices or perceptual distances among objects. 
 
Regular Equivalence. The definition of regular equivalence is recursive. If two nodes are 
regularly equivalent, then they are connected to regularly equivalent nodes. Regular 
equivalence is used to identify nodes that are playing the same structural role, even if 
they are not connected to each other.  
 
Social Network (or, in mathematics, a Graph). A collection of nodes (also referred to as 
vertices or actors) together with a set of ties (also known as edges or links) that connect 
pairs of nodes. Typically used to represent social relations such as who is friends with 
whom, or who is the supervisor of whom. 
 
Structural Equivalence. At an intuitive level, a pair of nodes is said to be structurally 
equivalent to the extent that they occupy identical locations in a network, meaning that 
they are connected to exactly the same others. Structurally equivalent nodes are identical 
with respect to all structural properties, such as centrality or subgroup membership.  
 
 
1. Definition of Subject 
 
In social network analysis, 2-mode data refers to data recording ties between two sets of 
entities. In this context, the term “mode” refers to a class of entities – typically called 
actors, nodes or vertices – whose members have social ties with other members (in the 1-
mode case) or with members of another class (in the 2-mode case). Most social network 
analysis is concerned with the 1-mode case, as in the analysis of friendship ties among a 
set of school children or advice-giving relations within an organization. The 2-mode case 
arises when researchers collect relations between classes of actors, such as persons and 
organizations, or persons and events. For example, a researcher might collect data on 
which students in a university belong to which campus organizations, or which 
employees in an organization participate in which electronic discussion forums. These 
kinds of data are often referred to as affiliations. Co-memberships in organizations or 
participation in events are typically thought of as providing opportunities for social 
relationships among individuals (and also as the consequences of pre-existing 
relationships). At the same time, ties between organizations through their members are 
thought to be conduits through which organizations influence each other.  
 
2. Introduction 
 
Perhaps the best known example of 2-mode network analysis is contained in the study of 
class and race by Davis, Gardner and Gardner (henceforth DGG) published in the 1941 
book Deep South. They followed 18 women over a nine-month period, and reported their 
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participation in 14 events, such as a meeting of a social club, a church event, a party, and 
so on. Their original figure is shown in Figure 1. 
 

 
Figure 1. DGG women-by-events matrix. 

 
DGG used the data to investigate the extent to which social relations tended to occur 
within social classes.  
 
3. Basic Concepts 
 
A typical data matrix has two dimensions or ways, corresponding to the rows and 
columns of the matrix. The number of ways in a matrix X can be thought of as the 
number of subscripts needed to represent a particular datum, as in xij. If we stack together 
a number of similarly sized 2-dimensional matrices, we can think of the result as a 3-
dimensional or 3-way matrix.  
 
The modes of a matrix correspond to the distinct sets of entities indexed by the ways. In 
the DGG dataset described above, the rows correspond to women and the columns to a 
different class of entities, namely events. Hence, the matrix has two modes in addition to 
two ways; it is 2-way, 2-mode. In contrast, a persons-by-persons matrix A, in which aij = 
1 if person i is friends with person j, is a 2-way, 1-mode matrix, because both ways point 
to the same set of entities. 
 
In a sense, what constitutes different modes is up to the researcher. If we collect romantic 
ties among a group of people of both genders, we could construct a 2-mode men-by-
women matrix X in which xij = 1 if a romantic tie was observed between man i and 
woman j, and xij = 0 otherwise. Or, one could construct a larger 1-mode person-by-person 
matrix B also consisting of 1s and 0s in which it just happens that 1s only occur in cells 
where the row and column correspond to persons of different gender. Use of the men-by-
women matrix would imply that same-gender relations were impossible, whereas use of 
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the person-by-person matrix would suggest that same-gender relations were logically 
possible, even if actually not observed.  
 
Matrices recording relational information such as romantic ties can be represented as 
mathematical graphs as well. A graph G(V,E) consists of a set of nodes or vertices V 
together with a set of lines or edges E that connect them. An edge is simply an unordered 
pair of nodes (u,v). (In directed graphs or digraphs we use ordered pairs to indicate 
direction of the tie.) To indicate a tie between two nodes u and v, we simply include the 
pair (u,v) in the set E. The number of nodes in a graph is denoted by |V| or n. 
 
A bipartite graph is a graph in which we can partition all nodes into two sets, V1 and V2, 
such that all edges include a member of V1 and a member of V2. The number of nodes in 
each vertex set is denoted n1 and n2, respectively. 
 
4. Two-Mode Data in Social Network Analysis 
 
Most social networks are conceived of as relations among a set of nodes, and therefore 
represented as a 1-mode matrix (typically of 1s and 0s) or a simple graph or digraph. For 
example, we might collect data on who is friendly with whom within an organization, or 
who injects drugs with whom in a neighborhood.  
 
However, 2-mode data are common in social network contexts as well. Typical examples 
include, actor-by-event attendance (as in the DGG data), actor by group membership 
(such as managers sitting on corporate boards), and actor by trait possession (such as 
adjective checklist data), and actor by object possession (such as material style of life 
scales in which inventories are made of household possessions).  
 
In many cases when 2-mode data are collected, the analytical interest is focused on one 
mode or the other. For example, in the DGG dataset, person-by-event attendances were 
collected in order to understand social relations among the women, specifically, whether 
women tended to have social relations primarily within their own social classes. In the 
interlocking directorate literature, membership of executives on corporate boards is 
collected mainly in order to understand how corporations are intertwined, and how the 
structure of this connectivity affects corporate control of society. 
 
However, it can also occur that neither mode dominates our analytical focus and the 
primary interest is in the correspondence of one mode to the other. For example, a 
university might ask its faculty which courses they prefer to teach. Here, the objective is 
typically not to understand how faculty are related to each other through courses, nor how 
courses are related via faculty, but in the optimal assignments of persons to courses so 
that courses are staffed and faculty are not complaining. 
 
5.  Unimodal Approaches to 2-Mode Data 
 
One approach to handling 2-mode data in social network analysis is to convert the data to 
1-mode data. This is especially appropriate when the analytical interest focuses primarily 
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on just one of the modes. Consider, for example, the case of a person by group matrix X 
in which xij = 1 if person i belongs to group j. Let us assume that the groups are small and 
everyone in a group knows everyone else. In that case, we could try to infer an 
acquaintance network by constructing a 1-mode matrix A such that aij = 1 if person i is in 
at least one group with person j. Better yet, we can construct a valued matrix A such that 
aij gives the number of groups that i and j are both members of. In other words,  
 
 

jk
k

ikij xxa ∑=  or A = XX' Equation 1

 
We might regard aij as a proxy for the social proximity of i and j, or perhaps as a rough 
indicator of the potential for information flow between them. In this approach, we 
analyze each mode of the data separately. Figure 2 shows the values of A for the 2-mode 
data shown in Figure 2.  
 

EVE LAU THE BRE CHA FRA ELE PEA RUT VER MYR KAT SYL NOR HEL DOR OLI FLO
EVELYN 8 6 7 6 3 4 3 3 3 2 2 2 2 2 1 2 1 1
LAURA 6 7 6 6 3 4 4 2 3 2 1 1 2 2 2 1 0 0
THERESA 7 6 8 6 4 4 4 3 4 3 2 2 3 3 2 2 1 1
BRENDA 6 6 6 7 4 4 4 2 3 2 1 1 2 2 2 1 0 0
CHARLOTTE 3 3 4 4 4 2 2 0 2 1 0 0 1 1 1 0 0 0
FRANCES 4 4 4 4 2 4 3 2 2 1 1 1 1 1 1 1 0 0
ELEANOR 3 4 4 4 2 3 4 2 3 2 1 1 2 2 2 1 0 0
PEARL 3 2 3 2 0 2 2 3 2 2 2 2 2 2 1 2 1 1
RUTH 3 3 4 3 2 2 3 2 4 3 2 2 3 2 2 2 1 1
VERNE 2 2 3 2 1 1 2 2 3 4 3 3 4 3 3 2 1 1
MYRNA 2 1 2 1 0 1 1 2 2 3 4 4 4 3 3 2 1 1
KATHERINE 2 1 2 1 0 1 1 2 2 3 4 6 6 5 3 2 1 1
SYLVIA 2 2 3 2 1 1 2 2 3 4 4 6 7 6 4 2 1 1
NORA 2 2 3 2 1 1 2 2 2 3 3 5 6 8 4 1 2 2
HELEN 1 2 2 2 1 1 2 1 2 3 3 3 4 4 5 1 1 1
DOROTHY 2 1 2 1 0 1 1 2 2 2 2 2 2 1 1 2 1 1
OLIVIA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2
FLORA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2  

Figure 2. Women-by-women matrix of overlaps across events. 
 
It should be noted that A can be seen as a matrix of profile similarities or correlations 
among pairs of rows in X. For example, the matrix of Pearson correlations among rows of 
X is defined as follows: 
 
 

ji

jijk
k

ik

ij ss

uuxx
mr

−
=
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 Equation 2

 
Where ui is the mean of row i and si is the standard deviation of row i. It is evident that 
the correlation rij is essentially aij corrected for the number of groups that each belongs 
to. This kind of correction seems eminently desirable, but of course there are many ways 
of doing this. For example, consider a cross-tabulation T of row i and row j, such that tuv 
gives the number of columns k of X for which xik = u and xjk = v, as follows: 
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  Row j 
  1 0 

Row i 1 a b 
0 c d 
 

Figure 3. Contingency table T 
 

The first row marginal (a+b) gives the number of groups that person i belongs to while 
the first column marginal gives the number of groups that person j belongs to. Note that 
aij of Equation 1 corresponds to a in Figure 3. An obvious approach is the Jaccard 
coefficient, which may be defined as 
 
 

cba
acij ++

=  Equation 3

 
Thus, cij is essentially the cardinality of the intersection of the groups belonged to by both 
persons, divided by the cardinality of their union. The Jaccard coefficient is often 
recommended when the number of columns in X is large and the number of 1s in each 
row is highly limited.  
 
An alternative specifically designed for 2-mode affiliation data is given by Bonacich 
(1972). It normalizes aij as follows: 
 
 

bcad
adbca

a ij
ij −

−
=* , for ad ≠ bc Equation 4

 
 
5.1 Unimodal Visualization of 2-Mode Data 
 
Given that a 2-mode matrix has been transformed into a 1-mode matrix by taking 
similarities among the rows (or columns), one can visualize the network using all the 
usual techniques for visualization of valued networks. For example, a standard approach 
is to use metric multidimensional scaling (MDS) on the matrix A, generating a map in 
which points corresponding to nodes (e.g., persons) appear close to each other to the 
extent that they share many groups. Figure 4 shows such an MDS map based on Jaccard 
similarities. 
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Figure 4. Multidimensional scaling of Jaccard coefficients among rows of DGG matrix. 

 
To highlight structure, it is common to overlay lines between pairs of nodes with a 
similarity score greater than a certain level. Figure 5 shows the result for similarities 
greater than 0.4. The diagram effectively shows the bridging role of Ruth, who was seen 
by DGG based on ethnographic evidence as members of both groups of women. 
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Figure 5. Multidimensional scaling of Jaccard similarity coefficients, with lines indicating similarity 

scores greater than 0.4. Actor Olivia is obscured by Flora. 
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Alternatively, one can use a standard graph layout algorithm (GLA) to draw the graph 
induced by dichotomizing the Jaccard similarity matrix. For example, define Evu ∈),( if 
and only if (iff) 4.0>ijc . Compared to multidimensional scaling representations, GLAs 
have the disadvantage that distances between points cannot strictly be interpreted, but this 
property also means that nodes need not obscure each other. Figure 6 shows the results of 
applying a spring-embedding (Kamada and Kawai, 1989) GLA to the dichotomized data. 
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Figure  6. Spring-embedding representation of Jaccard similarities dichotomized at > 0.4 

 
A similar analysis can be carried out on the events rather than the women. Applying 
Equation 3 to the columns of the 2-mode matrix in Figure 1 yields a matrix of Jaccard 
coefficients which can be visualized using the same methods used for the women. Figure 
7 shows events with Jaccard overlaps greater than 0.35. 
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Figure 7. Spring-embedding representation of “ties” among events ( 35.0>ijc ). 

 
5.2 Unimodal Analysis of 2-Mode Data 
 
In general, analysis of 2-mode data transformed into valued 1-mode networks proceeds 
like any other valued network. As with visualization, this often means generating a graph 
from the valued data via some rule such as (u,v) ∈ E iff aij > q, where q is chosen by the 
researcher. Typically, there is no theoretical reason for choosing any particular value of 
q; hence a series of different values is generally chosen and the analysis repeated for 
each. 
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There are, however, a few consequences that stem from the 2-mode origin of the data. By 
their very nature, many commonly used measures of similarity and dissimilarity satisfy 
triangle inequality laws. For example, for Euclidean distance, every triple of nodes i, j, k 
satisfy the following rule: 
 
 jkijik ddd +≤  Equation 5
 
As a result, the 1-mode data (especially if not dichotomized) artifactually exhibit a certain 
level of transitivity that may be higher than baseline models built on simple sociometric 
choice data would expect. Statistics based on transitivity, such as structural holes and 
clustering coefficients, must similarly be interpreted with some caution in such data. 
 
 
6.  Bimodal Approaches to 2-Mode Data 
 
Another approach to working with 2-mode data seeks to analyze both modes 
simultaneously. The data are seen to represent relations between two sets of nodes, 
forming a bipartite graph GB(V1+V2,E) in which, or all u and v, (u,v) ∈ E if and only if u 
and v belong to different vertex sets. In other words, all ties are between vertex sets and 
none are within-group. The matrix representation of such a graph can be a rectangular 
incidence matrix X (as in Figure 1) or a square bipartite adjacency matrix B with n=n1+n2 
rows representing both modes, and an equal number of columns, also representing both 
modes. In the latter case, the original matrix X forms a submatrix of the larger adjacency 
matrix B in which both rows and columns index the V1+V2 entities. The matrix B is 
composed of four blocks, two of which are empty, as shown in Figure 8. Note that the 
original matrix X forms the top right quadrant of B, and its transpose forms the bottom 
left quadrant. 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 
Figure 8. Bipartite adjacency matrix B created from the original 

DGG 2-mode matrix X.  
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6.1 Bimodal Visualization of 2-Mode Data 
 
All of the standard ways to visualize networks, such as MDS and GLAs, apply to 
bipartite graphs. For example, Figure 9 shows a spring-embedding layout of the bipartite 
graph represented by the matrix in Figure 8.  
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Figure 9. Spring-embedding representation of bipartite graph. 

 
In the representation, two nodes are near each other roughly to the extent that the 
geodesic distance between them is short. Thus, events are near each other if they are 
attended by the same women (distance 2), and women are near each other if they attend 
the same events. In this example, the representation makes clear that there is a set of 
women on the left (Mryna, Helen, Katherine, Nora, Silvia, etc) that attend a set of events 
exclusive to them (events 10 through 13), and another set of women (Evelyn, Theresa, 
Laura, Brenda, etc) that have their own events (E1 through E4), and finally a set of events 
that both “circles” of women attend (events E6 through E9). 
 
For small datasets, this bimodal visualization is often extremely effective for transmitting 
a holistic understanding of the whole dataset. 
 
It is worth noting that there is a simple mathematical relationship between pairwise 
overlaps as aij as defined in Equation 1 and path lengths in the bipartite graph. 
Specifically, the number of 2-step paths between any pair of women i and j in the 
bipartite graph is equal to aij, the number of events they attended in common. Of course, 
the number of 2-step paths is simply the matrix product BB, the bipartite adjacency 
matrix multiplied by itself. As shown in Figure 10, the top left block and bottom right 
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blocks of BB are the matrices A as calculated by Equation 1 for rows and columns 
respectively of X. 
 

EVE LAU THE BRE CHA FRA ELE PEA RUT VER MYR KAT SYL NOR HEL DOR OLI FLO E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
EVELYN 8 6 7 6 3 4 3 3 3 2 2 2 2 2 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LAURA 6 7 6 6 3 4 4 2 3 2 1 1 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
THERESA 7 6 8 6 4 4 4 3 4 3 2 2 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BRENDA 6 6 6 7 4 4 4 2 3 2 1 1 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CHARLOTTE 3 3 4 4 4 2 2 0 2 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FRANCES 4 4 4 4 2 4 3 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ELEANOR 3 4 4 4 2 3 4 2 3 2 1 1 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PEARL 3 2 3 2 0 2 2 3 2 2 2 2 2 2 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RUTH 3 3 4 3 2 2 3 2 4 3 2 2 3 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VERNE 2 2 3 2 1 1 2 2 3 4 3 3 4 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MYRNA 2 1 2 1 0 1 1 2 2 3 4 4 4 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KATHERINE 2 1 2 1 0 1 1 2 2 3 4 6 6 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SYLVIA 2 2 3 2 1 1 2 2 3 4 4 6 7 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NORA 2 2 3 2 1 1 2 2 2 3 3 5 6 8 4 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HELEN 1 2 2 2 1 1 2 1 2 3 3 3 4 4 5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DOROTHY 2 1 2 1 0 1 1 2 2 2 2 2 2 1 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OLIVIA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FLORA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 3 2 3 3 2 3 1 0 0 0 0 0
E2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 3 2 3 3 2 3 2 0 0 0 0 0
E3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 6 4 6 5 4 5 2 0 0 0 0 0
E4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 4 4 4 3 3 3 2 0 0 0 0 0
E5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 6 4 8 6 6 7 3 0 0 0 0 0
E6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 5 3 6 8 5 7 4 1 1 1 1 1
E7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 4 3 6 5 10 8 5 3 2 4 2 2
E8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 5 3 7 7 8 14 9 4 1 5 2 2
E9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 3 4 5 9 12 4 3 5 3 3
E10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 4 4 5 2 5 3 3
E11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 3 2 4 2 1 1
E12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 5 5 5 2 6 3 3
E13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 3 3 1 3 3 3
E14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 3 3 1 3 3 3  

 
Figure 10. Matrix BB giving the number of paths of length 2 between all pairs of nodes. 

 
 
6.2 Bimodal Analysis of 2-Mode Data 
 
Given a bimodal perspective, one approach to analyzing 2-mode data is to develop 
entirely new metrics and algorithms designed specifically for 2-mode data. Such 
techniques take cognizance of the fact that the observed network is not just bipartite by 
happenstance, but could not have been any other way. In other words, taking account of 
the fact that the observed lack ties between certain nodes (namely, those belonging to 
different modes) was by design – similar to the concept of structural zeros in log-linear 
modeling.  To date, few techniques of this kind have been developed, the exception being 
the area of 2-mode centrality measures, which has received significant attention (e.g., 
Bonacich, 1991). 
 
Another approach is to treat the bipartite graphs as ordinary graphs and apply all the 
standard algorithms and techniques of social network analysis. Effectively this assumes 
either that the special nature of the graphs will not affect the techniques, or that we can 
pretend that ties within modes could have occurred and just didn’t. This approach works 
for a small class of methods, but by no means all. For example, calculating transitivity 
fails because transitive triples are impossible in bipartite graphs (all ties are between 
modes, which means that if a b and b c then a and c must be members of the same 
class, and therefore cannot be tied, making transitivity impossible). In contrast, if we 
were to adapt the definition of transitivity to be based on quadruples such that a quad is 
transitive if a b, b c, c d and a d, this would be an example of the first approach. 
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Finally, a compromise approach is to use the standard metrics and algorithms that apply 
to general graphs, and then either adjust the outputs via normalization or adjust the 
baseline expectations for the results (Borgatti and Everett, 1997; Faust, 1997). In the 
former case, we develop normalizations that adjust the metrics (typically by dividing by 
theoretical bipartite maxima), and in the latter case we derive different theoretical 
distributions for the statistics in question. In general, we choose the former approach 
when statistics are bounded between 0 and 1 and can be interpreted as proportions of 
maximum possible values. We choose the latter approach when the statistics are 
unbounded and have direct interpretations (see example of cohesion below). 
 
In this section, we can consider a mix of techniques drawn from these three approaches. 
 
6.2.1 Bimodal Approaches to Graph Cohesion 
 
The simplest and most common measure of network cohesion is density – the number of 
edges divided by the number of pairs of nodes (using ordered pairs in the case of directed 
graphs and unordered pairs in the case of undirected graphs). In bipartite graphs, of 
course, only edges between vertex sets are possible. As a result, the maximum possible 
undirected ordinary density is  
 

)1)(( 2121

21

−++ nnnn
nn  Equation 6

 
Thus, if density were calculated on a 2-mode network as if it were an ordinary graph, we 
would probably want to normalize the result by dividing by the sum above, otherwise the 
calculated density would appear misleadingly low. This is a case where the “compromise 
approach” discussed above is effective. (Of course, in terms of computation, it would be 
easier to simply calculate the average of the 2-mode matrix X rather than convert to 
bipartite form and then perform this adjustment.) 
 
For measures of cohesion that are not expressed as fractions of maximum possible values, 
such as average geodesic path length, the need to renormalize is not as great, since the 
raw values are directly interpretable. In doing so, however, we must be careful not to 
compare the results with standard rules of thumb or theoretical models based on simple 
random graphs, as these have not assumed the bipartite restrictions. 
 
6.2.2 Bimodal Approaches to Centrality 
 
Four measures of centrality are used with high frequency in social network analysis 
today: degree, closeness, betweenness and eigenvector. We discuss each in turn. 
 
Degree centrality, di, is defined as the number of ties incident upon node i. Degree 
centrality is typically normalized by dividing by the maximum number of ties possible, 
which in a graph of n nodes is n-1. Hence 
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However, in any (non-trivial) bipartite graph, no node can be connected to all others, 
since this would mean within-mode ties. Instead, for a node in V1, the maximum number 
of ties it could have is n2, whereas for a node in V2, the maximum number of ties is n1. 
Hence a natural adjustment is to provide two separate normalization formulas as follows: 
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Equation 8

 
Closeness centrality is ordinarily defined as the sum of geodesic distances from a node to 
all others, as shown in Equation 8, where dij is the length of the shortest path from i to j 
and n = n1+n2 is the total number of nodes. The best (smallest) score possible occurs 
when the node has a tie to every other node, in which case the total distance to all others 
is n-1. Thus, closeness centrality is usually normalized by dividing ci into n-1.  
 
 

∑=
n

j
iji dc  

i
i c

nc 1* −
=  

Equation 9

 
In the bipartite case, the maximum number of nodes that a node can be distance 1 from is 
the number of nodes in the other class. For other nodes in its own class, the closest it can 
be is two links away. Thus, the theoretical bipartite minimum value of ci (where 1Vi∈ ) is 

)1(2 12 −+ nn  and the minimum for cj (where 2Vj∈ ) is )1(2 21 −+ nn . Therefore, 
closeness centrality can be normalized in bipartite graphs as follows: 
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Betweenness centrality refers to the sum of shares of shortest paths that pass through a 
given node. The betweenness of node k in an ordinary graph is defined by Equation 11, 
where gij is the number of geodesic paths from node i to node j, and gikj is the number of 
geodesic paths from i to j that pass through k. 
 
 

∑∑
≠ ≠

=
n

ki

n

ikj ij

ikj
k g

g
b

,
2
1  Equation 11

 



[Forthcoming in Encyclopedia of Complexity and System Science] 

Betweenness is ordinarily normalized by dividing by (n-1)(n-2) = n2 – 3n + 2, which is 
the maximum betweenness that any node can achieve in a graph with n nodes, which 
occurs for the node at the center of a star-shaped graph. This maximum is appropriate for 
bipartite graphs only when one mode has just one node; otherwise we must take account 
of the sizes of each vertex set. Equation 11 gives the maximums for nodes in each vertex 
set as a function of the vertex set sizes. In the equation, x div y refers to integer division 
of x by y and x mod y refers to the remainder of an integer division of x by y. 
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Equation 12

Given these maxima, we can normalize standard betweenness centrality for bipartite 
graphs by dividing by these maxima, as shown in Equation 13. 
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6.2.3. Cohesive Subgroups 
 
Detecting cohesive subgroups is somewhat more difficult in bipartite graphs than in 
ordinary graphs. For example, one of the earliest formal definitions of a subgroup is the 
clique (Luce and Perry, 1949) which is defined as a maximal complete subgraph – i.e., a 
set of nodes that is as large as possible subject to the condition that every pair is adjacent. 
However, in bipartite graphs, cliques are impossible, since in any connected triple, two 
nodes must be non-adjacent. Thus, cliques are not useful in this context. In addition, 
relaxations of the clique concept based on density or frequency of paths (such as k-
plexes, lambda sets and ls-sets) do not work well, due to the sparse nature of bipartite 
graphs. For example, if we calculate k-plexes for the DGG dataset, we find huge numbers 
of very small groups. For k = 2, there are 394 2-plexes of size 3 or greater. For k = 3, 
there are 5,553 3-plexes, and for k = 4, there are 37,633 4-plexes of size 3 or greater.  
 
However, other classical notions of cohesive subgroups make more sense for bipartite 
graphs. In particular, relaxations of the clique concept based on distance, such as n-
cliques, n-clans and n-clubs have good interpretations in bipartite graphs and work well 
in practice. In fact, 2-cliques defined on the bipartite graph have the property of bipartite 
completeness, meaning that, within the bipartite subgraph induced by the 2-clique, every 
node of one mode has a tie with every node of the other mode, which is to say that all 
possible ties are present. In this sense, for bipartite graphs, 2-cliques capture the 
underlying idea of a clique better than cliques do. This notion has been formalized in the 
definition of a biclique, which is defined as a maximal complete bipartite subgraph. 
Mathematically, it is identical to a 2-clique computed on the bipartite representation. 



[Forthcoming in Encyclopedia of Complexity and System Science] 

 
As a practical example, a biclique analysis of the DGG dataset finds 68 bicliques, and a 
secondary analysis of similarities of nodes across biclique membership profiles does a 
good job of revealing structure, as shown in Figure 11. In the figure, an edge is shown 
between two nodes if the Pearson correlation between their biclique membership profiles 
is greater than 0.4 (i.e., (u,v) ∈ E iff rij > 0.4). The two groups are women are clearly 
shown, as well as the two groups of events that are associated with each of the groups of 
women. In addition, the separation of Flora and Olivia is clearly shown, as well as the 
bridging position of Ruth and Pearl.  
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Figure 11. Graph induced by Pearson correlations across biclique membership profiles. Edges 

indicate a correlation greater than 0.4. 
 
The success of bicliques as 2-mode analogues of cliques suggests the possibility of 
creating 2-mode analogues for other cohesive subgroup concepts that we previously 
dismissed as unusable in the 2-mode context. For example, a k-plex is defined in ordinary 
network analysis as a maximal subgraph S(V,E) of size n such that each member of the k-
plex is adjacent to at least n-k others. By analogy, for 2-mode networks we can define a 
(k1,k2)-biplex as a maximal bipartite subgraph G(V1,V2,E) such that each node in V1 is 
adjacent to |V2|-k2 others and each node in V2 is adjacent is adjacent to |V1|-k1 others. 
Obviously, a (0,0)-biplex is a biclique. A useful feature of this relaxation of a biclique is 
that we can set different standards of cohesiveness for each mode of the data network, 
perhaps reflecting the relative sizes of the modes, or the affiliative capabilities of the 
nodes themselves. 
 



[Forthcoming in Encyclopedia of Complexity and System Science] 

6.2.3. Bimodal Approaches to Positions and Roles 
 
Two concepts of position and role are particularly well known in social network analysis. 
These are structural equivalence and regular equivalence. Generalizations to 2-mode (and 
higher) data were developed by Borgatti (1989) and Borgatti and Everett (1992) and 
Everett and Borgatti (1993). We consider each of these in turn. 
 
6.2.3.1 Structural Equivalence 
 
In the best definition of structural equivalence (Everett and Borgatti, 1994), two nodes u 
and v are said to be structurally equivalent if there exists a graph automorphism that 
would be an identity except that u and v are mapped to each other. In other words, given a 
diagram of the graph, you could swap nodes u and v (and no other nodes) without 
changing the structure of the network one iota. A key implication of this definition is that 
structurally equivalent nodes have identical relational environments – aside from each 
other, they are connected and not connected to exactly the same third parties. As a result, 
one approach to identifying structurally equivalent nodes is to compute a similarity 
measure among rows and columns of the adjacency matrix defining the graph.  
 
This approach requires no modification for the bipartite case. In fact, the unimodal  
analysis described in Section 5 (applied to each mode in turn) is precisely the same as 
computing structural equivalence on the 2-mode incidence matrix (Figure 1). In addition, 
for certain measures such as the Jaccard coefficient, computing structural equivalence on 
the bipartite adjacency matrix B of Figure 8 gives exactly the same results as computing 
it on the 2-mode incidence matrix X. 
 
Another approach to structural equivalence is known as blockmodeling. Instead of (or as 
a result of) measuring the extent of structural equivalence between nodes, we partition the 
nodes into classes such that nodes in the same class are structurally equivalent (or nearly 
so). Given such a partition of nodes, we can reorder and partition the corresponding rows 
and columns of the adjacency matrix. This in turn induces to partition of matrix cells into 
matrix blocks. A characteristic property of perfect structural equivalence partitions is that 
matrix blocks are necessarily homogeneous with respect to cell values, and each block 
will consist of all 1s or all 0s (known as 1-blocks and 0-blocks respectively). Figure 12 
gives an example with three equivalence classes. 
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A1 A2 A3 B1 B2 B3 B4 C1 C2 C3
A1 0 0 0 1 1 1 1 0 0 0
A2 0 0 0 1 1 1 1 0 0 0
A3 0 0 0 1 1 1 1 0 0 0
B1 1 1 1 0 0 0 0 1 1 1
B2 1 1 1 0 0 0 0 1 1 1
B3 1 1 1 0 0 0 0 1 1 1
B4 1 1 1 0 0 0 0 1 1 1
C1 1 1 1 1 1 1 1 0 0 0
C2 1 1 1 1 1 1 1 0 0 0
C3 1 1 1 1 1 1 1 0 0 0  

 
Figure 12. Perfect structural equivalence blockmodel. 

 
In the 2-mode case, one approach is to blockmodel the bipartite adjacency matrix B. This 
can be done, but the bipartite structure imposes certain constraints. For example, blocks 
involving within-mode ties must be 0-blocks. In addition, the best 2-block partition will 
almost certainly be the mode partition (except in trivial cases), and in general, all other 
partitions will be refinements of the mode partition (i.e., they will be nested hierarchically 
within the mode partition).  
 
A more elegant (and computationally efficient) approach is to work from the 2-mode 
incidence matrix X. In this case, we redefine a blockmodel to refer to a coordinated pair 
of partitions, one for the rows and one for the columns. We then redefine structural 
equivalence as follows. Given a 2-mode matrix X with modes V1 and V2, a 2-mode 
blockmodeling P is said to be a structural equivalence if for all nodes u,v in Vi and all w 
in Vj, p(u) = p(v) iff xuw = xvw for i ≠ j and where p(u) indicates the equivalence class of 
node u. Restating this in words, a 2-mode structural equivalence blockmodeling is one in 
which row nodes in the same class if and only if they have identical rows, and column 
nodes are in the same class if and only if they have identical columns. An example 
involving 4 classes of rows and 3 classes of columns is shown in Figure 13.  
 

E1 E2 E3 F1 F2 F3 F4 G1 G2 G3
A1 1 1 1 1 1 1 1 0 0 0
A2 1 1 1 1 1 1 1 0 0 0
A3 1 1 1 1 1 1 1 0 0 0
B1 1 1 1 0 0 0 0 0 0 0
B2 1 1 1 0 0 0 0 0 0 0
B3 1 1 1 0 0 0 0 0 0 0
B4 1 1 1 0 0 0 0 0 0 0
C1 0 0 0 1 1 1 1 0 0 0
C2 0 0 0 1 1 1 1 0 0 0
C3 0 0 0 1 1 1 1 0 0 0
D1 0 0 0 1 1 1 1 1 1 1
D2 0 0 0 1 1 1 1 1 1 1  

 
Figure 13. A 2-mode structural equivalence blockmodel in which the row partition has 4 classes and 

the column partition has 3 classes.  
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In empirical work, of course, we do not expect to obtain perfect 1-blocks and 0-blocks. 
Instead we seek partitions that minimize the number of errors (where we define an error 
as either a 1 inside a 0-block or a 0 inside a 1-block).  
 
6.2.3.2 Regular Equivalence 
 
Two nodes are said to be regularly equivalent (i.e., play the same structural role) to each 
other to the extent that they have ties (lack of ties) to corresponding others who are 
themselves regularly equivalent to each other. That is, u and v are regularly equivalent if, 
(a) for all x such that u has a tie to x, there exists a y that is regularly equivalent to x such 
that v has a tie to y, and (b) for all x such that u has an incoming tie from x, there exists a 
y that is regularly equivalent to x such that v has an incoming tie from y. Whereas in 
structural equivalence equivalent nodes are connected to the same others, in regular 
equivalence equivalent nodes are connected to the same types of others.  
 
Alternatively, we can define regular equivalence in terms of a partition C of nodes into 
labeled classes (known as colors) such that regularly equivalent nodes are required to 
have the same colors in their neighborhoods. That is, for all nodes u and v, 
 
 C(u) = C(v) implies C(N(u)) = C(N(v)), Equation 14
 
where C(N(u)) is the set of distinct colors found among the nodes constituting u’s 
immediate neighborhood.1 Taking a blockmodeling perspective, it can readily be seen 
that Equation 14 implies a blockmodel in which each matrix block is either entirely zero 
(a “zeroblock”) or contains at least one 1 in every column and in every row (a “regular 
oneblock”), as illustrated in Figure 14.  
 
 

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
N1 0 0 0 1 0 0 1 0 0 0
N2 0 0 0 0 1 0 0 0 0 0
N3 0 0 0 1 1 1 1 0 0 0
N4 1 0 0 0 0 0 0 0 1 1
N5 1 0 1 0 0 0 0 1 1 0
N6 0 1 0 0 0 0 0 0 1 1
N7 0 1 1 0 0 0 0 1 0 1
N8 1 0 1 0 1 1 0 0 0 0
N9 0 0 1 0 0 1 0 0 0 0
N10 0 1 0 1 1 0 1 0 0 0  

 
Figure 14. Perfect regular equivalence blockmodel on an ordinary graph. 

 

                                                 
1 For directed graphs, we require C(No(u)) = C(No(v)) and C(Ni(u)) = C(Ni(v)), where No(v) refers to the set 
of nodes that v sends a tie to, and Ni(u) refers to the set of nodes that v receives a tie from. 
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Equation 14 lends itself easily to the bipartite case. Instead of seeking a single partition of 
nodes, we seek a different partition for each mode. Labeling these partitions R and C, we 
modify our definition such that for all u,v ∈ V1 and x,y ∈ V2, 
 
 C(u) = C(v) implies R(N(u)) = R(N(v)), 

and 
R(x) = R(y) implies C(N(x)) = C(N(y)).  

 

Equation 15

Of course, the neighbors N() of any node consist entirely of nodes belonging to the other 
mode. 
 
Thinking in terms of the 2-mode incidence matrix shown in Figure 1, Equation 15 
implies that we can section the matrix into rectangular blocks such that each block is 
zeroblock or a regular 1-block. An example of a 2-mode regular blockmodel is shown in 
Figure 15.  
 

 
 

Figure 15. A 2-mode regular equivalence blockmodel. 
 
As with structural equivalence, in empirical work we do not expect to obtain perfect 1-
blocks and 0-blocks. Instead we seek partitions induce matrix blocks that are as nearly 
regular as possible. 
 
 
7. Conclusion 
 
In this chapter we have considered methods of visualizing and analyzing 2-mode network 
data. An examination of the chapter suggests that four strategies are employed for 
handling 2-mode data. First, there is converting the data into two separate 1-mode 
datasets, and analyzing each separately. Second, there is using existing 1-mode methods 
on a bipartite representation of the 2-mode data, and essentially ignoring its special 
features. Third, there is using 1-mode methods but either adjusting the interpretation or 
applying some kind of normalization to adjust the results. Finally, there is developing 
new methods designed specifically for the 2-mode case. The chapter has provided 
examples of all four strategies.  

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
C1 1 0 1 0 1 1 0 0 0 0
C2 0 0 1 0 0 1 0 0 0 0
C3 0 1 0 1 1 0 1 0 0 0
C4 1 0 0 0 0 0 0 0 1 1
C5 1 0 1 0 0 0 0 1 1 0
C6 0 1 0 0 0 0 0 0 1 1
C7 0 1 1 0 0 0 0 1 0 1
C8 0 0 0 0 1 1 0 0 0 0
C9 0 0 0 0 0 1 0 0 0 0
C10 0 0 0 1 1 0 1 0 0 0
C11 1 0 1 0 0 0 0 0 1 1
C12 0 1 0 0 0 0 0 1 0 1
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It is worth reminding the reader that only 2-mode data viewed in a network context has 
been considered here. In principle, most data dealt with by social scientists is structured 
as a 2-mode matrix of cases (rows) and variables (columns) and most statistical 
techniques assume such data. This chapter obviously does not discuss this vast pantheon 
of techniques, although it is clear that many would be appropriate, particularly structure-
finding techniques such as factor analysis and correspondence analysis. 
 
8. Future Directions 
 
Although it would be a mistake to think of 2-mode data as an advance over 1-mode data, 
it is important to note that there are many cases were extending network analysis 
methodology to more than 2 modes is desirable. For example, we might analyze 
membership in organizations over time, yielding a 3-way, 3-mode data matrix of relations 
that is person by organization by period. Similarly, we might be interested in modeling 
the intellectual landscape of an academic field, representing publications as k-mode 
bundles of authors, journals, years, institutional affiliations and topics.  
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