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NOTIONS OF POSITION IN SOCIAL
NETWORK ANALYSIS

Stephen P. Borgatti*
Martin G. Everett'

The notion of position is fundamental in structural theory.
However, at least two profoundly different conceptions of posi-
tion exist. The two basic types of position have radically differ-
ent characteristics, making them appropriate for different theo-
retical applications. We present examples in which scholars
have operationalized one type of position but drawn conclu-
sions as if the other type had been used. We compare the two
notions of position in terms of their applicability in several
research areas, including power in exchange networks, role
theory, world-system theory, and social homogeneity.

One of the most central concepts in social network analysis and
structural theory in general is the notion of position. Position is
utilized as a dependent or independent variable in a variety of empiri-
cal and theoretical works. For example, position plays a critical role
in the study of world systems (Snyder and Kick 1979; Breiger 1981;
Nemeth and Smith 1985); adoption of innovation, diffusion, and
other social homogeneity phenomena (Burt 1978, 1987; Rogers
1979; Friedkin 1984; Anderson and Jay 1985); and power in ex-
change networks (Cook et al. 1983; Markovsky, Willer, and Patton
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1988). Position has also been related to similarity in attitudes (Erick-
son 1988); mental health (Kadushin 1982); economic success in in-
terorganizational networks (Burt 1979); perception of leadership
(Leavitt 1951); political solidarity (White, Boorman, and Breiger
1976); job changes (Krackhardt and Porter 1986); production of sci-
entific knowledge (Brym 1988); growth of cities (Pitts 1978); organi-
zational influence (Galaskiewicz and Krohn 1984); and many others.

However, the term position refers to more than one concept.
A variety of different formal definitions exist, and an even greater
variety of operational implementations of these definitions may be
found in the form of relaxed definitions, algorithms, procedures,
computer programs, and the like. These myriad variants can yield
more than just different numerical results: Many must be interpreted
quite differently and demand that different causal mechanisms be
posited. Yet, as a rule, the substantive and theoretical literature that
has utilized the notion of position has not done this. In fact, as we
shall demonstrate, published works frequently define position one
way and then proceed to draw conclusions as if a different definition
had been used.

In this paper, we suggest that there are two fundamental types
of positional notions that underlie the observed variety. To simplify
the exposition, we select a single prototypical representative of each
type to describe in detail. We then compare the applicability of each
across several areas of research, including power in exchange net-
works, world-systems theory, roles and social structure, and social
homogeneity. We conclude with a look at the deeper notions of struc-
ture that underlie the different approaches to the concept of position.

It should be emphasized that our discussion pertains to the
idealized, mathematical formalizations of the positional notions, not
to the actual algorithms and computer programs that implement
them. This distinction is not problematic, however, since all valid
algorithms and programs reach the same solutions when applied to
perfect, error-free data; they differ only in the way they handle
departures from mathematical ideals.

1. BASIC NOTIONS

The fundamental idea underlying the notion of position is that
of structural correspondence or similarity. Actors who are connected
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in the same way to the rest of the network are said to be equivalent
and to occupy the same position. In general, the objective of posi-
tional analyses is to partition actors into mutually exclusive classes of
equivalent actors who have similar relational patterns. This posi-
tional approach to network analysis is intended to contrast with the
relational or cohesive approach (Burt 1978; Friedkin 1984), which
attempts to find subsets of actors who are strongly or closely related
to each other. In the first case the underlying clustering principle is
similarity; in the second, it is cohesion or proximity.

However, there are at least two fundamentally different ways
of interpreting the phrase connected in the same way to the rest of the
network, which depend on whether one wishes to take the phrase
literally or metaphorically. The distinction is illustrated by the follow-
ing problem, adapted from Hofstadter (1985). Consider the follow-
ing two abstract structures:

A=(1234554321) and B=(0123443210).

Hofstadter asks, “What is to B as 4 is to A? Or, to use the
language of roles: What plays the role in B that 4 playsin A?” (p. 549).
According to Hofstadter, an overly literal, concrete answer is 4,
whereas a more natural, more analogical response is 3. More formally,
the distinction is analogous to the distinction made in mathematics
and logic between identity/equality and isomorphism/similarity. For
example, in algebra, two binary relations are equal or identical if they
contain the same ordered pairs, but they are isomorphic if there is a
one-to-one correspondence between the pairs of each relation. Simi-
larly, two semigroups are the same if they relate the same compound
relations in the same ways, but they are isomorphic if there is a one-to-
one correspondence between their multiplication tables. In geometry,
two triangles are equal if corresponding sides are the same length, but
they are similar if they are proportional to each other. In the case of
networks, the distinction corresponds to Faust’s (1988) distinction
between structural equivalence' (Lorrain and White 1971; Burt 1976;

"t is unfortunate that Lorrain and White used the term structural equiva-
lence to name their particular species of positional concept, because the term
connotes a much broader notion of position than was actually defined. As will
become apparent, their concept would have been more aptly named structural
equality or structural identity or even label equivalence. 1t is important to keep in
mind that despite appearances, structural equivalence refers to a specific defini-
tion of position, not to the general principle of structural similarity.
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Breiger, Boorman, and Arabie 1975) and general equivalences, and to
Pattison’s (1988) distinction between structural equivalence and ab-
stract equivalences. The general or abstract equivalences referred to
include automorphic equivalence or structural isomorphism (Everett
1985; Winship 1988), regular equivalence (White and Reitz 1983;
Borgatti and Everett 1989), and a variety of others (Winship and
Mandel 1983; Breiger and Pattison 1986; Hummell and Sodeur 1987).
The concepts of structural, automorphic, and regular equivalence are
listed in order of increasing generalization: Any pair of nodes that is
structurally equivalent is also necessarily automorphically and regu-
larly equivalent, and any pair of automorphically equivalent nodes is
also regularly equivalent.?

As Pattison (1988) noted, there are important differences
among all the abstract equivalences, but the fundamental distinction
is between structural equivalence and all the others. Of the others,
the one most comparable to structural equivalence in definition and
application is structural isomorphism (automorphic equivalence).
For this reason, in the interests of clarity and simplicity, we focus our
discussion only on the contrast between structural equivalence and
automorphic equivalence.

2. TECHNICAL DEFINITIONS AND NOTATION

For convenience, all examples in this paper concern non-
valued networks defined by a single relation. The restriction is not
necessary but significantly simplifies the exposition. Networks are
represented as graphs denoted G(V.E), where V refers to a set of
vertices, nodes, points, or actors, and E refers to a set of edges, lines,
links, ties, or relationships. When discussing the vertex sets of two
graphs, G and H, we use V(G) to refer to the vertex set of graph G
and V(H) to refer to the vertex set of graph H. Similarly, E(G) refers
to the edge set of graph G and E(H) to the edge set of graph H.

The notation P(a) is used to denote the position of node a in a
network. The position of a node is a categorical attribute of that
node, which can be thought of as its color (Everett and Borgatti

21t should also be noted that regular equivalence actually defines a lattice
of distinct equivalences (Borgatti and Everett 1989), which includes structural
and automorphic equivalence.
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1990) or flavor. By a slight abuse of notation, we also let P({a,b . .})
={P(a) U P(b) U . . .}. In other words, if S is a set of nodes, P(S) is
the set of distinct positions occupied by the nodes in S.

In a directed graph, the notation N'(a) denotes the set of
nodes that a receives ties from and is defined as N'(a) = { ¢: (c,a) €
E). The notation N°(a) denotes the set of nodes that a sends ties to
and is defined as N°(a) = { ¢: (a,c) € E). We refer to N'(a) and N°(a)
as the in-neighborhood and out-neighborhood of a, respectively. The
neighborhood of a point, N(a), is defined as the ordered pair N(a) =
(N'(a),N°(a)).

In an undirected graph, the neighborhood N(a) is defined as
the set of nodes directly connected to node a, so that N(a) = { c:(a,c)
€ E} = {c: (c,a) € E}.

A structural or graph-theoretic attribute is any attribute of a
node or graph that makes no reference to the names or labels of the
nodes in the graph. For example, in an undirected graph represent-
ing friendships among a set of people, the property of being no more
than three links distant from any node is a structural attribute of a
node, but the property of being no more than three links distant from
Mary is not a structural attribute. The centrality of a point is a
structural attribute, as is the property of belonging to seven cliques
of size 4, but belonging to three cliques that include Bill as a member
is not a structural attribute.

3. POSITION AS STRUCTURAL EQUIVALENCE

The term structural equivalence was coined by Lorrain and
White (1971), who defined it this way:

Objects a,b of a category C are structurally equiva-
lent if, for any morphism M and any object x of C,
aMx if and only if bMx, and xMa if and only if xMb.
In other words, a is structurally equivalent to b if a
relates to every object x of C in exactly the same
ways as b does. From the point of view of the logic of
the structure, then, a and b are absolutely equiva-
lent, they are substitutable. (P. 81)
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Today, however, the term is used to refer to a much simpler?
concept. The modern usage is due to Burt (1976), who defined a set
of structurally equivalent nodes as a set of nodes connected by the
same relations to exactly the same people. Thus, an actor’s position
is defined by who he or she is connected to. It is literally and con-
cretely the set of actors with whom he or she has direct contact. In
the notation given in the previous section, P(v) = N(v) forallv € V.
If we ask, What is Bill’s position in the network?, we are asking
nothing more than, Who is Bill directly connected to?

Applied to nonvalued graphs, Burt’s definition can be ele-
gantly stated as follows: If G = ( V,E ) is a graph and a,b € V, then
P(a) = P(b) iff N(a) = N(b). The definition says that two actors in a
network occupy the same position if and only if they have perfectly
overlapping neighborhoods. In other words, they have identical ego
networks. By identical we mean not only that the ego networks con-
tain the same individuals, but that, consequently, they also contain
the same relationships among them. As shown in Figure 1, the only
difference between the ego networks of structurally equivalent actors
like Bill and Joe is the name or label of the two egos.

It should be noted that our rewritten definition reproduces a
small but important shortcoming in Burt’s definition, which also oc-
curs in Lorrain and White’s original. The problem is that for graphs
without reflexive loops, none of these definitions allows nodes that
are connected to each other to occupy the same position. Thus, in
Figure la, Mary and Jane are not structurally equivalent by these
definitions. A better definition is P(a) = P(b) iff N(a) — {a,b} = N(b)
— {a,b}. However, this version fails when a single directed arc links a
and b. For example, in Figure 2, nodes a and b would be considered

3The difference between the formulations may not be apparent from the
definitions. What Lorrain and White intended is something akin to the following
simplified recipe. Start with a handful of observed relations. Call these genera-
tors. Using relational composition and some rules for determining when two
relational products are the same, create a semigroup of relations. Determine
which nodes have ties to the same actors on these new compound relations (not
necessarily the generators). Call these structurally equivalent. It is important to
realize that in Lorrain and White’s formulation, structurally equivalent nodes
need not have ties to the same alters on the observed relations, as Burt’s defini-
tion requires, but they must always have ties to the same alters on certain
derived relations.
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Mary

Bill Joe

Jane
(a) Simple network

Mary
Bill
Jane
(b) Bill's ego-network
Mary
Joe
Jane

(c) Joe’s ego network

FIGURE 1.

structurally equivalent by this definition. The definition also fails to
distinguish nodes with reflexive loops from ones without.

Since structurally equivalent actors are connected to exactly
the same nodes, they are identical with respect to all structural vari-
ables. They have the same centrality, eccentricity (Harary 1969), de-
gree, prestige, etc. In fact, any graph-theoretic statement that can be
said about one actor can be said about the other. The converse, how-
ever, is not true. Actors who are indistinguishable on absolutely all
graph-theoretic attributes are not necessarily structurally equivalent.
For example, in Figure 3, nodes a and & are absolutely identical with
respect to all possible graph-theoretic variables, but they are not struc-
turally equivalent because they do not have the same neighborhoods.

4A definition that works in most cases was given by Burt (1987, p. 1330).
A definition that works in all cases was given by Everett, Boyd, and Borgatti
(1990). In their definition, P(a) = P(b) iff 3 = € Aut (G) such that = = (a b) and
m(a) = b, where Aut (G) denotes the automorphism group of a graph G.
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a

d O O b
c

FIGURE 2. Graph containing no structurally equivalent nodes.

As Lorrain and White (1971, p. 82) pointed out, for a given
set of relations, the notion of structural equivalence is a wholly local
concept: To know whether two actors are equivalent, we only need to
know who they are directly connected to. We do not require any
knowledge of the rest of the network. Consequently, an actor’s posi-
tion is utterly unaffected by any changes in the network that occur
more than one link away.5 As a practical matter, this means that
structural equivalence can be calculated on incomplete data sets,
provided that no data that pertains to a given pair of individuals’ ego
networks is missing. In contrast, global variables, such as between-
ness centrality (Freeman 1978) or abstract equivalences, are miscalcu-
lated if any ties, no matter how distal, are missing.

It also means that structural equivalence is not truly a rela-
tional concept in the sense of Wellman (1988) or a structural concept
in the sense of Krippendorff (1971), because the entire network need

50f course, if the researcher computes structural equivalence not on the
raw data but on a derived dataset that encodes more than simple adjacency, then
even remote changes in the original network could affect the measurement of
the degree of structural equivalence of a given pair of actors. For example, Burt
(1976) suggested computing structural equivalence on the geodesic distances
among actors in a network. However, three points should be noted. First, this is
not a theoretical issue: No changes in the network at more than two links away
can ever affect the determination of whether a given pair of actors is equivalent
or not equivalent in the ideal sense given by the definition of structural equiva-
lence. It is only practical algorithms intended to detect structural equivalence in
imperfect empirical data that are affected. Second, perfectly equivalent actors
will not be affected by remote changes. The issue arises only when we compute a
measure of the extent of structural equivalence among actors who are not struc-
turally equivalent. Third, and most important, using derived datasets such as
geodesic distance matrices can change results but not the essential nature of
structural equivalence: It remains a local concept even if the data are somehow
“global.”
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a b

.

c d i

FIGURE 3. Graph in which all points have equal degree.

not be involved for one to evaluate the status of a given actor. In-
stead, one need collect only ego network data, which is not funda-
mentally different from collecting traditional “attribute” data (Well-
man 1988) like marital status or number of children.

A consequence of the local nature of structural equivalence is
that sets of structurally equivalent actors are always fully contained
within components of a graph. That is, actors located in different
components of a disconnected graph (or in different graphs) can
never be structurally equivalent (except isolates). In fact, as a gen-
eral rule, nodes cannot be structurally equivalent if they are more
than two links apart. Exceptions occur only for isolates, which satisfy
structural equivalence vacuously, and for directed graphs, in which
case the rule refers to links without regard for direction (i.e., to
semipaths). Hence, cohesion/proximity is part and parcel of the no-
tion of structural equivalence. For undirected graphs, this means that
sets of structurally equivalent actors form a cohesive subset, specifi-
cally a 2-clique (Luce 1950), which is a well-known formalization of
the general notion of a cohesive subset. Although the fact that
structurally equivalent actors form cohesive subsets has often been
noticed empirically (Friedkin 1984; Burt 1978, 1987), the literature
has in general regarded sets of structurally equivalent actors as funda-
mentally different from cohesive subsets (e.g., DiMaggio 1986; Hart-
man and Johnson 1990), rather than as a special type of cohesive
subset, which, mathematically, they are.

SAnother method of detecting subgroups in graphs, which also succeeds
in finding sets of structurally equivalent actors, is based on multidimensional
scaling of the graph-theoretic distance matrix of a graph (Burt 1982, p. 71).
Because structurally equivalent actors are the same distances from all other
nodes, this method assigns the same map coordinates to all structurally equiva-
lent nodes.
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d e £ P q T

FIGURE 4. Disconnected graph.

Ultimately, the structural equivalence conception of position
is about the location of an actor in a labeled graph. Structurally
equivalent actors share the same location. From this perspective, it is
not difficult to see why sets of structurally equivalent actors form
cohesive subsets: Both concepts are based on detecting actors who
occupy the same or nearly the same locations, neighborhoods, or
regions of a network. It is also obvious that two nodes occupying the
same location in a labeled graph share two fundamental and logically
distinct properties: proximity and similarity. The difference is illus-
trated in Figure 4, in which a disconnected graph represents certain
relations among coworkers in a formal organization. Each compo-
nent is a different office or subsidiary. While points a, g, and m are
similar in their patterns of connection, they are not at all proximate.
Conversely, the points a, b, ¢, d, e, and f are relatively proximate,
but they are not similar. However, points d and e, which are structur-
ally equivalent, are both proximate and similar.

4. POSITION AS STRUCTURAL ISOMORPHISM

Since automorphic equivalence depends crucially on the no-
tion of isomorphism, we use the terms automorphic equivalence and
structural isomorphism interchangeably. The notion of isomorphism
is fundamental in many branches of mathematics, including graph
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(a) Graph G (b) Graph H

FIGURE 5. Graphs G and H are isomorphic.

theory. An isomorphism is a one-to-one mapping of one set of ob-
jects to another such that the relationships among the objects are
also preserved. A graph isomorphism between two graphs G and H
is a mapping 7m:G—H such that for all a,b € V(G), (a,b) € E(G) <«
(m(a),m(b)) € E(H). In other words, a graph isomorphism is a map-
ping of the nodes in one graph to corresponding nodes in another
graph such that if two nodes are connected in one graph, then their
correspondents in the second graph must also be connected. Two
graphs are isomorphic if there exists an isomorphism that relates
them. For example, the two graphs in Figure 5 are isomorphic be-
cause the mapping 7;:G—H (Table 1) is an isomorphism.

Isomorphic graphs are identical with respect to all graph-
theoretic attributes. If a graph has twelve cliques of size 3 and ten
cliques of size 4, then all graphs isomorphic to it also have twelve
cliques of size 3 and ten cliques of size 4. The only possible differ-
ences between isomorphic graphs are the labels of the nodes and
edges (if any).

TABLE 1
The Graph Isomorphism
m,:G—H, Relating the
Graphs in Figure 5

m(8)

o

S A6 o8
I SQT O
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Graph K

FIGURE 6. Graph K is not isomorphic with any graph in Figure 5.

In fact, one way to think about isomorphic graphs is that
without labels on the nodes or edges, they would be indistinguish-
able. If we removed the labels on the graphs in Figure 5, then picked
the graphs up off the paper, shuffled them randomly, and then put
them back on the paper, we would not be able to tell which graph
was which. Nor, from a structural point of view, would it matter,
since the graphs have the same structure.

On the other hand, graph K in Figure 6 is distinguishable from
the graphsin Figure 5, even without the labels. Graphs H and G have a
node with degree 4 while graph K does not. Note that it is not an issue
of how the graphs are drawn (since the way a graph is drawn is arbi-
trary), but how they are structured, the pattern of their connections.

All graphs are isomorphic with themselves. That is, for all
graphs, we can find a mapping m:G—G such that = is an isomor-
phism. An isomorphism of a structure with itself is known as an
automorphism. Obviously, 7 can always be the identity mapping,
where for all v € V, w(v) = v. However, it is often the case that there
exists an automorphism of G that is not the identity. For example,
the graph in Figure 3 has three nontrivial automorphisms, which are
visible as symmetries of the graph. One can see that if the labels were
removed from the graph, a 180° rotation of the graph along the
horizontal axis would be indistinguishable from the original. Simi-
larly, a 180° rotation around the vertical axis would also leave the
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TABLE 2
All Automorphisms of the Graph in Figure 3

71(v) m2(v) 73(v) 4(v)

<

a h c j a
b g d i b
c j a h c
d i b g d
e f e f e
f e f e f
g b i d g
h a j c h
i d g b i
j c h a j

graph unchanged. The third automorphism is a composition of the
other two. Table 2 gives all automorphisms of the graph.

Two nodes a and b in a graph G are structurally isomorphic or
automorphically equivalent if there exists an isomorphism m:G—-G
such that 7(a) = b. Two actors occupy the same position if they are
isomorphic. Sets of isomorphic actors are called orbits. In Figure 3,
the orbits are {a,c,h,j}, {b,d,g,i}, and {e,f}. In contrast, the set of
structurally equivalent points are {a,c}, {b,d}, {g,i}, and {h j}.

Whereas the structural equivalence approach views two actors
as occupying the same position only if they are connected to the same
alters, the structural isomorphism approach (like regular equiva-
lence) views actors as occupying the same position if they are con-
nected to corresponding others. That is, if actors a and b are iso-
morphic, then for all ¢ € V, (a,c) € E implies there exists a node d
isomorphic to ¢ such that (b,d) € E. Putting it another way, whereas
the neighborhoods of structurally equivalent points contain the same
actors, the neighborhoods of isomorphic actors contain the same
positions. Technically, in the structural equivalence approach,

P(a) = P(b) >N(a) = N(b),
whereas in the isomorphic and regular equivalence approaches,’
"It should be noted that this equation is true of structurally isomorphic

nodes, but it is not a definition of automorphic equivalence. See Everett and
Borgatti (1990) for details.
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(b) Labels identify positions

FIGURE 7. Neighborhoods of isomorphic nodes contain the same positions, not the same
nodes. N(a) = {b,c,d}, while N(h) = {g,i,j}, yet P(N(a)) = P(N)(h)) = {1,2}.

P(a) = P(b) =P(N(a)) = P(N(b)).

Thus, in this approach, if actor a occupies the same position as
actor b, then the set of positions that a’s alters occupy is the same as
the set of positions that b’s alters occupy. An illustration is provided
in Figure 7. Furthermore, the ego networks of isomorphic actors are
also isomorphic. Not only is there a one-to-one correspondence be-
tween the nodes of each ego network, there is another one-to-one
correspondence between the lines among them.

Like structurally equivalent nodes, isomorphic nodes are abso-
lutely identical with respect to all structural variables. For example, in
Figure 7a, nodes a, c, h, and j all have the same closeness centrality
(Freeman 1978), graph-theoretic power index (Markovsky, Willer,
and Patton 1988), prestige (Knoke and Burt 1983), and eccentricity
(Harary 1969). They participate in exactly the same number of 2-
clans, 3-cliques, and 4-clubs (Mokken 1979). They are connected to
precisely the same number of nodes at distance 3. Unlike the case of
structural equivalence, the converse is also true: All nodes that are
identical with respect to all possible structural variables are necessarily
isomorphic.

One way to think about isomorphic nodes is to remove the
node labels from a graph, as in Figure 8a, to get an unlabeled graph,
as in Figure 8b. Then imagine picking the unlabeled graph up off the
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(a) Labeled

(b} Unlabeled

FIGURE 8. Labeled graph and underlying unlabeled graph.

paper, spinning it around a few times, and putting it down on a fresh
piece of paper. Could we tell which node is which? Some nodes are
obvious. Node a, for example, is easy to identify because it is the
only node incident with six lines. Nodes b and c, in turn, are impossi-
ble to distinguish from each other but easy to distinguish from other
nodes. A more interesting example is the graph in Figure 7a. In this
graph, all nodes have equal degree. But no matter how the graph is
drawn, certain structural differences among the nodes will be appar-
ent. For example, whereas some nodes (a, c, A, and j) are five links
distant from other nodes, two nodes (e and f) are no more than three
links distant from any other nodes.

Unlike structural equivalence, structural isomorphism is inde-
pendent of proximity. Isomorphic nodes may be adjacent, distant, or
completely unreachable from each other. In a disconnected graph,
nodes located in different components can be isomorphic, as shown
in Figure 4. If the data in Figure 4 refer to relationships among
coworkers in a formal organization, the components may refer to
different offices or subsidiaries. Using structural isomorphism we can
detect the similarity in position held by points @ and g, or b and hA.

In sum, structural equivalence and structural isomorphism are
fundamentally different approaches to the notion of position. In the
structural equivalence approach, position is seen quite literally as a
location in a labeled graph. It is about identifying who an actor is
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directly connected to. In contrast, the structural isomorphism ap-
proach sees position as a location in an unlabeled graph. Since, by
definition, nodes are not identifiable in an unlabeled graph except by
the pattern of connections in which they are embedded, the location
of a node in an unlabeled graph is the sum total of all structural
characteristics that can be calculated for that node. It is, ultimately,
the way in which the node is connected to others. If structurally
equivalent actors occupy the same location, structurally isomorphic
actors occupy analogous or isomorphic locations.

Abstracting a bit, we could say that in the structural equiva-
lence approach, the network or labeled graph represents the underly-
ing structure of a group; hence, an actor’s location in that structure
represents his or her position in the group. In contrast, in the struc-
tural isomorphism approach, the structure of interest is not the la-
beled graph itself, which is seen as the observed or “surface struc-
ture,” but the structure of the surface structure, which is the unlabeled
graph that underlies the labeled graph. It is the actor’s location in this
“deep structure,” then, that represents his or her position in the
group. Thus, structural equivalence is to labeled graphs what struc-
tural isomorphism is to unlabeled graphs. In the absence of a particu-
lar substantive application, we suggest that the choice between struc-
tural equivalence and structural isomorphism as measures of position
rests entirely on which of the labeled or unlabeled representations
best corresponds to one’s intuitive concept of what structure means.

It is important to note that the difference between auto-
morphic and structural equivalence is conceptual, theoretical, and
fundamental: It is not that one is an approximation or computer-
implementation of the other. We have found in informal discussions
with colleagues that some believe that the purpose of algorithms like
CONCOR (Breiger, Boorman, and Arabie 1975) and computer pro-
grams like STRUCTURE (Burt 1989) is to relax structural equiva-
lence to get something akin to automorphic equivalence. This is not
the case, as is easily verified by running a network such as Figure 3
through all these programs. Such programs do relax the definition of
structural equivalence, but only to allow nodes that are not perfectly
equivalent (i.e., that do not share absolutely every alter) to be consid-
ered equivalent; they will not find such points as a and h at all
equivalent. Similarly, programs for computing regular equivalence,
such as REGE (D. R. White 1984), and automorphic equivalence,
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such as MAXCORR (Borgatti 1987) or NSIM (Everett and Borgatti
1988), also relax their respective definitions, but the results will not
resemble the output of CONCOR or STRUCTURE.

5. THE USE OF POSITION IN STRUCTURAL THEORY

In this section we consider ways in which the notion of posi-
tion has been used in structural theory and discuss which type of
position is best suited for each specific application. In the process, we
give examples where the literature has confounded the two types of
position, using structural equivalence for data analysis but interpret-
ing results as if structural isomorphism had been used instead.

5.1. Status/Role Systems

Many authors (Lorrain and White 1971; Burt 1982; Sailer
1978; Winship and Mandel 1983; Faust 1988) have seen network
equivalences as formalizations of the hallowed sociological concepts
of status, position, role, and role-set.8 Nadel (1957), Merton (1959),
and Linton (1936) have all discussed social structure in terms of a
“pattern or network (or ‘system’) of relationships obtaining between
actors in their capacity of playing roles relative to one another”
(Nadel 1957, p. 12). This relational approach to social structure, as
distinguished from a normative approach, emphasizes that what de-
fines a role, such as that of nurse, is precisely the characteristic set of
relationships that actors who are nurses have with actors who are
doctors, patients, suppliers, secretaries, other nurses, and so on, just
as doctors are defined by their relationships with actors playing all
the other roles. Society is a network of relationships among individu-
als, and social structure is an underlying network of relationships
among roles or positions.

An illustration is given in Figure 9. Figure 9a records advice/
order-giving relations among individuals in a doctor’s office. Figure
9b collapses structurally similar actors (under both structural equiva-
lence and isomorphism) into positions and records relations among
the positions. Figure 9a describes the manifest society, while Figure
9b describes the underlying social structure.

8We use the terms role, status, and role-set synonymously, since their
differences do not bear on the issues of this paper.
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FIGURE 9. Relations in a doctor’s office.

Note that in this example, both structural equivalence and
isomorphism yield the same position, so they are equally applicable.
In Figure 10, however, we have a slightly different doctor’s office in
which each doctor has his or her own nurse and patients. Now the
doctors are no longer structurally equivalent, although they remain
isomorphic. Figure 11a collapses structurally equivalent nodes into
positions. Note that we no longer have a single position correspond-
ing to the role of doctor, nor a single position corresponding to the
role of secretary. In contrast, Figure 11b collapses structurally isomor-
phic nodes, yielding the same social structure as in Figure 9b.

As models of roles and social structure in general, structural
equivalence and isomorphism are clearly different: According to
structural equivalence, two actors must have the same relationships
with the same individuals to be regarded as playing the same role,
whereas according to structural isomorphism, they must have the
same relationships with counterparts who are playing the same roles.
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FIGURE 10. The “gives information about medicine” relation.

In other words, structural equivalence requires that two mothers
have the same children to both be called mothers, and that two
doctors have the same patients, nurses, and secretaries to both be
doctors. Structural isomorphism, on the other hand, requires only
that two mothers have the same relationships with their own chil-
dren, and that two doctors have the same relationships with their
own patients, nurses, and secretaries.

Hence, if we are interested in modeling social roles in the sense
of Nadel and Merton, we must choose structural isomorphism over
structural equivalence.® Even better, we should prefer a generaliza-
tion of structural isomorphism, such as iterated automorphic equiva-
lence (Everett et al. 1990) or regular equivalence. Substantively, the
principal difference between structural isomorphism and regular
equivalence is in the way in which quantities of ties are handled. For
example, according to structural isomorphism, a mother with one
child is different from a mother with 10 children, but according to
regular equivalence, they are the same. Thus, regular equivalence can
be used to get at more abstract aspects of roles. Which specific abstract
equivalence is needed is not the issue here: The important point is that

9However, if one is interested in a more circumscribed notion of role,
structural equivalence may be the most appropriate. For example, mothers and
fathers of the same children jointly play the role of parent to those particular
children, and they are structurally equivalent. Similarly, siblings are children of
the same parent and are structurally equivalent.
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FIGURE 11. Relations among positions in a doctor’s office.

all are preferable to structural equivalence, which is not designed to
model this sort of phenomenon.

Historically, however, researchers needing to operationalize
concepts of social role, status, and role-set have employed structural
equivalence. For example, in analyzing networks of supreme courts,
Caldeira (1988, p. 46) claimed, “Even more important, if a re-
searcher uses structural equivalence as a criterion, he can identify
positions, or sets of individuals, that correspond to social roles in the
network of communication.” This misidentification of structural
equivalence with social roles and positions is particularly unfortunate
because role theory is often used as a template for building theory
about a variety of social phenomena. Studies relying upon such con-
cepts then mistakenly use structural equivalence to operationalize
the key variable. For example, several authors (Evan 1966; Burt
1979; Galaskiewicz and Krohn 1984; DiMaggio 1986; H. C. White
1988) have seen economic systems and interorganizational networks
as role systems. As Galaskiewicz and Krohn (1984) put it,
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A key concept in our study is the social role. . . .
Two actors are in the same relative position in social
space, i.e., have the same role, to the extent that
they have similar relationships to others in the social
arena or fields. . . . To phrase this in the context of
resource dependency theory, two actors occupy the
same structural position, i.e., role in the network, to
the extent that they are dependent upon the same
organizations for the procurement of needed input
resources and the same actors are dependent upon
them for their output resources. (Pp. 528-29)

Galaskiewicz and Krohn went on to use structural equivalence
to identify organizational roles (p. 532). Another example is pro-
vided by Burt (1979), who described economic sectors as sets of
structurally equivalent positions:

An economy can be discussed as a network of eco-
nomic transactions, relations, between corporate ac-
tors; an interorganizational network of sales and pur-
chases. The division of labor ensures a high level of
redundancy in this network. Those actors engaged in
the production of similar goods will have similar rela-
tions from other actors (i.e., will require similar propor-
tions of goods as inputs from suppliers) and will have
similar relations to other actors (i.e., will offer similar
types of goods as outputs to consumers). Viewing
the economy as an interorganizational network, those
firms producing similar types of goods are structurally
equivalent and so jointly occupy a single “position” in
the economy. The economic transactions between indi-
vidual firms therefore can be aggregated into relations
between groups of structurally equivalent firms so as to
create a topological model of the economy. In the termi-
nology of the Bureau of the Census, these structurally
equivalent firms constitute “sectors” of the economy,
or “industries” in the economy. (P. 417)

However, since firms in a given sector may purchase from
similar suppliers but not necessarily from the same suppliers, and
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since they may sell to similar clients but not necessarily to the same
clients, structurally equivalent firms cannot possibly constitute sec-
tors, though structurally isomorphic (and particularly regularly
equivalent) firms might. Empirical studies hoping to confirm hy-
potheses based on the kind of reasoning used by Burt will fail if they
operationalize position as structural equivalence. It is important to
note that there is nothing wrong with either the proposed image of an
economy or the notion of structural equivalence in themselves: It is
merely that the latter cannot be used as a model for the former.

Similarly, Snyder and Kick (1979) used role theory to justify
their use of structural equivalence to define positions of nations in
the world economy. Since world system/dependency theory uses con-
cepts of position and role (Wallerstein 1974), and since structural
equivalence has been claimed to find positions and roles, it is not
surprising that someone would use structural equivalence to opera-
tionalize world system theory. The problem, of course, is that two
nations that occupy the same position (say, “core”) may have similar
relations with other positions (say, “periphery”), but not necessarily
the same nations. This point is also made by Smith and White (1986).
For example, nation A might purchase certain agricultural products
from Guatemala, electronic products from Japan, and engineering
expertise from Germany. Nation B might purchase agricultural prod-
ucts from Honduras, electronic goods from Taiwan, and engineering
from France. If it happens that Guatemala and Honduras occupy the
same position in the world system, and Japan and Taiwan and, sepa-
rately, Germany and France do as well, then from the point of view
of a role system, A and B exhibit the same relational pattern and so
play the same role. But from the point of view of structural equiva-
lence, A and B are completely unalike.

It is not unusual in the literature for researchers to use struc-
tural equivalence programs to process their data but then to justify
and explain the method as if structural isomorphism were used in-
stead. For example, DiMaggio (1986) used structural equivalence to
identify organizations with similar organizational fields:

The alternative means of partitioning a population
on the basis of observed relations among the popula-
tion’s members is to divide the population into struc-
turally equivalent positions: Organizations in each
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subset (or block) share similar relations with organi-
zations in other blocks whether or not they are con-
nected to one another. Imagine a population of orga-
nizations connected by flows of personnel and infor-
mation. One subset of this population (A) recruits
personnel from and provides information to another
subset of the population (B). Organizations in Sub-
set A never exchange information or personnel with
one another, nor do organizations in Subset B. Or-
ganizations in each subset exchange only with orga-
nizations in the other; but, within the subset with
which they exchange, their choices of partners are
random. (P. 344)

It is DiMaggio’s final sentence that is of particular interest,
since it is certainly false if applied to structural equivalence but poten-
tially true if applied to structural isomorphism. From the perspective
of philosophy of science, it is interesting to note that three types of
systems are implied by DiMaggio’s discussion. First, there is the
“real” interorganizational network in which individual organizations
have links of various kinds with other individual organizations. Sec-
ond, there is the simplified model of the researcher, in which underly-
ing types of organizations (positions) are hypothesized such that all
organizations of one type have the same set of relations with organi-
zations of other types, though not necessarily with the same individ-
ual organizations. Third, there is the operationalization of this model
via structural equivalence. In most scientific research, the deepest
problems probably occur in the generation of the second system,
which is essentially a theory or explanation of the observed relation-
ships. However, in DiMaggio’s case, the problem occurs with the
third system, in which the theory is incorrectly operationalized.

5.2. Power in Experimental Exchange Networks

There are two well-known streams of work in this area, repre-
sented by the work of Cook et al. (1983), on the one hand, and the
work of Markovsky et al. (1988), on the other. Since both use the
notion of position in the same way, for our purposes it suffices to
describe only the first approach.
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The explicit objective of Cook et al. is to investigate structural
power: The power that one individual has over another is a function
of the extent to which each is dependent on the other for unnamed
goods (Emerson 1962). Dependency is a function of demand (how
much each individual needs the goods that others can provide) and
supply (the number of individuals who can supply the goods). In the
context of network analysis, demand may be viewed as an internal,
individualistic, nonstructural attribute of actors. In contrast, supply
may be viewed as an external function of the structural position of a
node in the network. To investigate only the structural, supply-side
of power, Cook et al. designed their experiments so that all actors
had equal demand.

The appropriate notion of position in this context is structural
isomorphism. If power, as expressed in these particular experimental
designs, is a purely structural attribute, then sets of isomorphic ac-
tors must have equal power, since isomorphic actors are by definition
identical with respect to all structural attributes. We can think of
power in this context as the outcome of a purely structural process
(exchange), which cannot contradict the classification of actors by
automorphism classes. If it does, then the experimental design has
not succeeded in filtering out all the nonstructural elements of the
process, such as individual variations in competence, motivation,
and resources, of which the latter two are components of the demand
side of dependency. In this sense, the notion of structural isomor-
phism can be used to diagnose the presence of nonstructural ele-
ments in a process, in the “same” way that models based on the
marginals of contingency tables can diagnose the presence of interac-
tions among variables.

We can infer that both sets of researchers have recognized
intuitively that structural isomorphism is the appropriate notion of
position in this context because they invariably label positions in a
way consistent with isomorphism and inconsistent with structural
equivalence. However, this must remain an inference, since they do
not address the issue directly. Markovsky et al. (1988) defined posi-
tion (rather vaguely) as follows:

Positions are network locations occupied by actors.
A relation between two positions is an exchange
opportunity for actors in those positions. In short,
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actors occupy positions linked by relations. We will
index both actors and position using uppercase let-
ters and at times refer to them interchangeably.
(P. 223)

Similarly, Cook and Emerson (1978) provided the following
anti-definition:

People in structurally similar locations are said to
occupy the same position. We will provide no explicit
definition of position until the theory becomes more
formal, at which point it will be given a graph-
theoretic definition. (P. 725xn)

A later paper (Cook et al. 1983) defined position as “a set of
one or more points whose residual graphs are isomorphic.” The
reason for defining position in this way is left unstated, but as Everett
et al. (1990) have shown, it can be regarded as an (inaccurate) ap-
proximation to structural isomorphism. Substituting structural iso-
morphism for their ad hoc definition would put that portion of their
work on a more solid mathematical foundation.

Structural equivalence would not be an appropriate approach
to this position in this case because there is nothing in the (present)
theoretical formulation of power in exchange networks that demands
that nodes of equal power be connected to precisely the same others.
For example, in Figure 12, equal power is predicted by both major
theories for all points labeled E, even though they are quite distant
from each other. It is not that structural equivalence yields wrong
predictions (it does not), but that it fails to make most of the predic-
tions that can be made. In this example, all nodes F have equal
power, but since some are more than one intermediary apart, they
are not structurally equivalent, and structural equivalence cannot
predict the observed power homogeneity of all Fs. Similarly, all E
nodes have equal power, but again structural equivalence cannot
predict this, this time because each is connected to nodes that the
others are not connected to. In general, structural equivalence reacts
to nonstructural elements and hence fails to predict homogeneity for
the outcome of any truly structural process.

It is important to note that what makes structural isomor-
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Fl1

FIGURE 12. All nodes labeled with the same letter are expected to achieve similar levels
of power. Adapted from Cook et al. (1983, p. 280).

phism the right concept here and structural equivalence the wrong
concept is not the phenomenon of power: It may well be that equal-
ity of power in natural exchange networks is better predicted by
structural equivalence than by structural isomorphism. That is, it
may be that collections of actors who are both proximate and struc-
turally similar are the most likely to achieve similar power levels for a
host of substantive reasons, including the opportunity for alliance
formation. But the way Cook et al. and Markovsky et al. have de-
signed their experiments, the only components of power that are
availabe to the subjects are the purely structural aspects. The aptness
of this description is particularly evident in the work of Markovsky et
al. They argued that power is a positive function of the number of
odd-length, nonintersecting paths, and a negative function of the
number of even-length, nonintersecting paths. These are entirely
structural attributes. Consequently, in these experiments it does not
matter who actors are connected to, but ~ow they are connected.®

VA key implication of their results is that a node’s power in an exchange
network is a global, structural property that depends, recursively, on the power
of the node’s potential trading partners, which in turn depends on the power of
their set of partners, and so on. If a node is connected only to powerful others, it
cannot be powerful. This contrasts with Emerson’s (1962) simple dependency
theory, which implies that the more trading partners an actor has, the greater his
or her power.
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This is precisely the difference between structural equivalence and
structural isomorphism.

More broadly, the important difference between structural
isomorphism and structural equivalence is that each implies a differ-
ent type of mechanism by which homogeneity across subsets of ac-
tors with respect to a key substantive outcome is achieved. Structural
isomorphism is the right concept for modeling power in experimental
exchange networks because the mechanism by which equality of
power is achieved is entirely structural and unrelated to proximity. In
contrast, structural isomorphism is the wrong concept for modeling
the outcome of any kind of infectious process, such as homogeneity
with respect to gossip heard or diseases suffered, because such pro-
cesses are not entirely structural and depend crucially on proximity.
Conversely, structural equivalence is wrong for modeling any homo-
geneity that is achieved by a noninfectious type of mechanism.

5.3. Social Homogeneity

In their classic study of innovation, Coleman, Katz, and
Menzel (1957) used a network approach to explain adoption of a new
drug among physicians. The idea was that while any given physician
has a certain probability of adopting a new drug using information he
or she may have gathered from manufacturers and published studies,
the probability is increased if he or she knows another physician who
has already adopted the drug. This relational or cohesive approach
asserts that at least one causal mechanism underlying social homoge-
neity is a process of direct infection or transmission similar to the
spread of gossip or disease. This assertion implies that groups of
physicians who are closely connected are likely to be more homoge-
neous with respect to adoption of the new drug than are collections
of physicians who are not closely connected. Consequently, we ex-
pect co-membership in cohesive subsets such as cliques to predict
similar outcomes with respect to adoption.

There has been some interest in the literature (Burt 1978; Burt
and Doreian 1982; Friedkin 1984; DiMaggio 1986; Burt 1987; Erick-
son 1988; Hartman and Johnson 1990) in evaluating whether the cohe-
sive or the positional approach is the better predictor of certain forms
of social homogeneity. At the substantive level, the question is which
is the most effective mechanism of achieving homogeneity: person-to-
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person infection or some other mechanism such as imitation of one’s
peers. However, the debate is clouded by the use of structural equiva-
lence as the definition of position. One problem with this choice is the
assumption that structural equivalence is conceptually and empirically
different from cohesion. Itis not. As we have discussed earlier, sets of
structurally equivalent actors form a kind of cohesive subset known as
a 2-clique. Hence, if we take a structural equivalence approach to
defining position, we cannot logically test whether position is a better
predictor than cohesive subset membership. At best, we can choose
between two kinds of cohesive subsets.!!

Another problem concerns the linkage between the choice of
network models (cohesion versus structural equivalence) and the
choice of theoretical explanatory mechanisms (direct infection versus
imitation or other mechanisms). At first glance it might appear that
we could statistically partial out the cohesive component of structural
equivalence. Friedkin (1984) attempted exactly this. Noting that di-
rect connections among structurally equivalent actors confound the
comparison with cohesive subsets, Friedkin partialed out these ef-
fects and found that structural equivalence loses a great deal of its
predictive power. However, as Friedkin noted, removing the effects
of direct connections is not nearly enough, since structurally equiva-
lent actors will still share all of their contacts. If any or all of these
contacts are infected, we would still expect structurally equivalent
actors to be homogeneous. Consequently, both cohesive/relational
and structural equivalence approaches are consistent with the mecha-
nism of infection/transmission, and choosing one over the other does
not necessitate a different explanatory mechanism.

Friedkin also attempted to control for the number of shared
contacts or two-step paths connecting equivalent actors. However, itis

ISee Borgatti, Everett, and Shirey (1990) for a discussion of the differ-
ent definitions of cohesive subsets.

120n the other hand, relational and structural equivalence approaches
do not necessarily imply the same causal mechanisms. This point was made
convincingly by Burt (1987, p. 1293n), who realized that “a vulgar understanding
of structural equivalence views [diffusion] by structural equivalence to be no
more than an indirect effect of cohesion.” He dismissed this view on empirical
grounds because, unlike Friedkin (1984), Burt found no evidence in the Medical
Innovation data for diffusion via direct connections. He therefore concluded
that the ability of structural equivalence to predict homogeneity could not be
due to an infection-type mechanism.
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impossible to control for all two-step paths because no actors (except
isolates) can be structurally equivalent and yet share no contacts!
Ultimately, the notion of structural equivalence without proximity is
meaningless: It is an inseparable part of the concept.!* Therefore, if
we are truly interested in noncohesive (or, substantively, noninfec-
tious) determinants of social homogeneity, we cannot use structural
equivalence. Instead, we should use structural isomorphism, which
measures structural similarity unconfounded by proximity.

Unlike structural equivalence, isomorphism entails a different
theoretical explanation for diffusion than that posited by the rela-
tional or cohesion-based approach. In particular, the mechanism can-
not depend upon interpersonal transmission of any kind, since
isomorphic actors need not be connected even indirectly. An exam-
ple is a centrality-based explanation, on the hunch that physicians
who are peripheral to the medical community might be more likely
to adopt than physicians who are more central. Adopting the latest
medical advances might be a way for marginal physicians to gain
prestige and attention and thereby move toward the center. Simi-
larly, central physicians might be slow to adopt innovations that
could make unwelcome changes to the status quo. Another mecha-
nism might be the similar responses we expect from similarly con-
structed organisms to similar environments. For example, if certain
respondents achieve similar scores in a psychometric test that mea-
sures, let’s say, authoritarianism, it might be because they have the
same combinations of relationships with their respective parents,
bosses, and spouses, yielding similar experiences and opportunities
and ultimately similar personality characteristics.

In reality, non-transmission-based mechanisms of the sort illus-
trated above might not exist, or if they do exist, their effects might be
negligible compared with the powerful forces of person-to-person
transmission. If so, cohesive subsets of actors will evince greater
homogeneity than sets of isomorphic actors, and we shall be able to
conclude that the relational approach predicts better than a posi-

BBHowever, this is not to say that there aren’t kinds of cohesive sub-
groups that are more cohesive than structural equivalence. Sets of structurally
equivalent actors are 2-cliques, which were introduced by Luce (1950) with the
express purpose of relaxing the extreme cohesiveness required by the clique
concept (Luce and Perry 1949). Since that time, other cohesive subset defini-
tions have appeared, which are intermediate in cohesiveness between true
cliques and n-cliques (Alba 1973; Mokken 1979; Seidman and Foster 1978).
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FIGURE 13. Mary and Bill are structurally equivalent.

tional approach. If both structural similarity and cohesion are impor-
tant determinants of diffusion, then structural equivalence could well
emerge as the more powerful predictor.

From the point of view of building structural theory in gen-
eral, however, we must be careful when using structural equiva-
lence as an independent variable. Because it necessarily confounds
structural similarity with proximity, it is conceptually inelegant.
Moreover, it prevents evaluation of the relative contributions of
structural similarity and cohesion to predicting the outcome vari-
able. A cleaner and more useful alternative is to use both cohesion
and structural isomorphism as theoretically orthogonal independent
variables, thereby separating the components of structural equiva-
lence while not losing the benefits of either.

There is another advantage of structural isomorphism over
structural equivalence in building structural theory. Suppose we ex-
pect actors occupying the same position to have similar outcomes
with respect to a particular variable of interest. For example, we are
interested in testing the hypothesis that position in the social-support
network at a nursing home predicts the number of visits required by a
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doctor. Suppose we operationalize position as structural equivalence,
check the correspondence between position and outcome, and find
that the hypothesis is supported. For example, suppose it turns out
that Bill and Mary in Figure 13 both require a great deal of medical
attention. The critical question from the point of view of structural
theory is whether the similar result is due to some structural feature
of their position (such as being the only bridges between two sets of
actors) or to their being connected to the same three maddening
individuals, named Moe, Curly, and Larry, and only these three.
With structural equivalence, we cannot distinguish between these
two possibilities because every member of a set of structurally equiva-
lent actors is connected to the same unique combination of individu-
als. In this sense, structural equivalence is highly particularistic and
individualistic and not, in this sense, structural. Isomorphism, in con-
trast, is purely structural. The effects of structural similarity are never
confounded with the effects of specific individuals. For example, if in
Figure 13 the isomorphic actors Michael, John, Linda, Charles, Jane,
and Sally all have the same medical outcomes, then we can reason-
ably infer that it is due to some structural attribute of their common
position, such as being peripheral.

6. SUMMARY

We have attempted to detail the differences between struc-
tural equivalence and more-abstract equivalences, focusing on the
abstract equivalence most comparable to structural equivalence,
which is structural isomorphism. Whereas structural equivalence de-
fines position in terms of who an actor knows, structural isomor-
phism defines it in terms of the way an actor is connected. Whereas
structurally equivalent actors are both proximate and similar, struc-
turally isomorphic actors are only similar. Among methodologists,
these distinctions have long been understood. However, the implica-
tions for building sociological theory have not previously been drawn
out. For example, we have pointed out that while cohesive/relational
and structural equivalence approaches to social homogeneity do not
demand that different causal mechanisms be posited, cohesion and
structural isomorphism almost always do. We have also pointed out,
echoing Sailer (1978), that structural equivalence should not be used
to model role systems, despite numerous studies that do just that.
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