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ABSTRACT 

 

In this paper, we explore the use of graph layout algorithms (GLAs) for visualizing proximity 

matrices such as obtained in cultural domain analysis. Traditionally, multidimensional scaling 

(MDS) has been used for this purpose. We compare the two approaches in order to identify 

conditions when each approach is effective. As might be expected, we find that MDS shines 

when the data are of low dimensionality and are compatible with the defining characteristics of 

Euclidean distances, such as symmetry and triangle inequality constraints.  However, when 

working with data that do not fit meet these criteria, GLAs do a better job of communicating the 

structure of the data. In addition, GLAs lend themselves to interactive use, which can yield a 

deeper and more accurate understanding of the data.  
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Visualizing Proximity Data 

INTRODUCTION 

Visualization of proximity matrices is commonly used in cultural domain analysis 

(Weller and Romney, 1988; Borgatti, 1998).  These visualizations facilitate interpretation when 

we collect item-by-item perceived similarity matrices.  Since the 1960s, the most common 

method of visualizing such data has been Multidimensional Scaling (Torgerson, 1958) (“MDS”), 

which represents similarities and differences among a set of items as Euclidean distances in an k-

dimensional space (typically two dimensions for easy representation in printed form).  However, 

we propose that the graph layout algorithms (GLAs) which underlie many popular social 

network analysis tools (e.g., Borgatti, 2002; Batagelj and Mrvar, 2003) offer an alternative 

approach to visualizing this type of data and can assist in analysis by producing visualizations 

that more effectively convey specific characteristics of the data.  Our intent is not to suggest that 

GLAs should replace MDS visualizations, and we identify circumstances in which MDS 

produces superior visualizations.  Nor is our intent to compare the methods from a mathematical 

perspective.  Rather, our goals are 1) to introduce an additional tool that can assist in analysis 

and visualization of this type of data, 2) to help identify conditions where each approach excels 

or falters, and 3) to provide a visual comparison of each tool’s representation when applied to the 

same data. 

We organize this paper as follows.  First we very briefly review both MDS and Graph 

Layout Algorithms (GLAs) techniques.  Then we show how GLA methods can be applied in 

cultural domain analysis (CDA).  Next, we systematically compare the two approaches, 

highlighting where each approach is more able to represent the underlying structure of the data.  

We conclude with a summary of our findings. 
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MDS:  MODELING PERCEIVED SIMILARITY AS EUCLIDEAN DISTANCE 

The most common technique for visualizing perceived similarities or dissimilarities is 

Multidimensional Scaling (Torgerson, 1952; see Kruskal & Wish, 1978 for an excellent 

introduction). MDS creates a graphical representation of a square item-by-item (or “1-mode”) 

proximity matrix.  The MDS algorithm determines coordinates for each item in an k-dimensional 

space such that the Euclidean distances among the points best approximates the input 

proximities.  Input proximities may be either similarities or dissimilarities. In the case of 

dissimilarities (such as distances between cities), the relationship between input proximities and 

the Euclidean distances in the MDS map is positive: larger input values correspond to larger map 

distances. In the case of similarities (such as correlations or perceived similarity data), the 

relationship is negative: larger input values correspond to smaller map distances.  

In cultural domain analyses, the input matrix is an aggregate similarity matrix, which 

represents the proportion of times that a given pair of items was seen as similar by respondents in 

elicitation tasks such as pilesorts or triads (Borgatti, 1994).  

MDS has both metric and non-metric variations.  In metric MDS, coordinates in k-

dimensional space are sought such that the Euclidean distance between any pair of items is 

linearly related (positively or negatively depending on whether the data are dissimilarities or 

similarities) to the input proximity of the same pair. In non-metric MDS, the Euclidean distances 

are only required to match the rank-order of the input proximities. In either case, a measure of fit 

between the Euclidean distances and the input proximities is computed to allow assessment of 

the adequacy of the MDS representations.  Most fit measures, such as the commonly used stress 

measures of Kruskal (1964), are simple normalizations of the sum of squared differences 
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between the distances on the MDS representation and a function of the input proximities.  High 

stress indicates a poor fit and that the MDS representation distorts the underlying data.  

Increasing the number of dimensions reduces the distortion; however, it also undermines the 

goals of both data reduction and useful visualization of the underlying data. 

Figure 1 shows a metric MDS representation of the CITIES dataset that is included in the 

UCINET software package (Borgatti, Everett, & Freeman, 2002).  These data, presented in Table 

1, comprise travel distances, in miles, among nine US cities.  MDS plots can be rotated around 

the origin or reflected through either axis to facilitate interpretation without affecting the 

representation of the data.  In fact, Figure 1 was reflected through the horizontal axis to better 

approximate most maps of the US.  This close visual approximation is consistent with a low 

stress value of 0.014, indicating that the very little distortion was introduced when representing 

the data in a 2-dimensional plane.  If, however, we had included cities from around the globe we 

would have had to choose between a highly distorted representation in two dimensions or an 

undistorted but difficult-to-print representation in three dimensions.   

Figure 2 shows a non-metric scaling of the same data. While the two MDS pictures are 

generally similar, the relative positioning of the cities in the metric version matches their 

physical locations slightly better than the non-metric one.  This is because the non-metric MDS 

algorithm considers only the rank order of the input proximities (i.e., distances), stripping the 

data of their interval/ratio properties.  In cases where the data are inherently interval or ratio, 

information is loss in a non-metric representation.  However, in many cases non-metric MDS is 

the more appropriate choice.  This is especially true in CDA, where the data consist of the 

proportion of respondents who consider each pair of items similar. Although these data can be 

seen as ratio-level (since they are frequencies), it is not commonly believed that there is a linear 
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relationship between the proportions and the degree of similarity of items.  That is, items 

indicated as similar 50% of the time are not necessarily “twice as similar” as items indicated as 

similar 25% of the time.  However, we do expect the rank-ordering is right: the first pair is more 

similar than the latter. Thus, the non-metric MDS technique that relies only on the rank-ordering 

of similarities is typically more appropriate, even though it is “throwing away” some of the 

richness of the data. 

For example, Figures 3 and 4 show metric and non-metric MDS plots for perceived 

similarities among 24 holidays, respectively, collected by Boston College student Heidi Stokes 

from undergraduate students as part of a research methods class. The stress for the metric MDS 

plot is 0.269, while the non-metric stress is only 0.171.  Since the underlying algorithms are 

different, a direct comparison of the two stress values is not meaningful. However, the non-

metric stress is more clearly within the accepted rules of thumb (Kruskal & Wish, 1978). More 

importantly, the non-metric visualization produced is more meaningful, better identifying the 

clustering of holidays that represents the students’ understanding of the domain.  

In both metric and non-metric forms, MDS attempts to minimize the “error” (i.e. 

distortion) between the n-dimensional solution and the ideal solution through a least squared 

mechanism.  One consequence of this is that the (mis)placement of distant items has a greater 

impact on the error calculation than does the placement of near items.  Kruskal and Wish (1978) 

describe this as better representing the data’s “global structure” than their “local structure.”  As 

such, whenever there is stress, the interpretation of smaller distances in MDS plots is less reliable 

than that of larger distances.  For example, in Figure 4, which shows the non-metric MDS 

representation of the holidays data, it is perfectly reasonable to draw an inference that the Fourth 

of July is perceived to be very different from the group of religious holidays to the right 
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(Christmas, Easter, Hanukkah, Yom Kippur, and Passover) and distinct from but more similar to 

the nationalistic or “patriotic” holidays to the left (Veterans, Patriots, Columbus, Labor, 

Memorial, Presidents, and Flag day).  It would be less reasonable to make any inferences about 

the differences in distance between the Christmas/Easter and the Hanukkah/Passover pairs.  In 

fact, we will see later that, despite appearances, Hanukkah and Passover are perceived to be more 

similar than Christmas and Easter.  While the general clustering of points into distinct clumps 

provides useful information, the closer distances are less meaningful and MDS is not generally 

useful in identifying the relative ranking of similarities within a group of items positioned closely 

together. 

 

GLAs:  MODELLING PROXIMITIES AS NETWORKS 

Outside computer science and electrical engineering, graph layout algorithms have mostly been 

used to represent social network data. With the ever-increasing popularity of social network 

analysis research (Borgatti & Foster, 2003), considerable advances have been made in the 

application of graph layout algorithms to visualize social networks of all sorts: from HIV 

transmission (Klovdahl, 1985) to communication networks (Freeman, 1978) and from the Bank 

Wiring Room interactions in the famous Hawthorne studies (Roethlisberger & Dickson, 1939) to 

attendance at society events (Davis, Gardner & Gardner, 1941).  Virtually all social network 

visualization tools use a graph layout algorithm (“GLA”) to depict the network graphically.   

As an example, consider the well-known Wiring Room dataset. These data are presented 

in Table 2.  In the matrix, a “1” in any cell indicates that the associated pair of workers was 

observed playing games together, while a “0” indicates they did not.  The data are depicted 

graphically in Figure 5 using Netdraw (Borgatti, 2002), although similar results would have been 
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obtained with other tools (e.g., Batagelj & Mrvar, 2003).  It is striking how clearly the visual 

representation conveys the underlying structure of the relationships.  In particular, the graph 

makes it immediately apparent that there are two main groups of persons and that W5 and W7 

represent the only connection between them.   

Most graph layout algorithms are based on drawing an analogy between networks and 

physical systems. One of the oldest and best known GLAs is the spring-embedding algorithm of 

Eades (1984).   As its name suggests, the algorithm works by modeling a network of social ties 

as a system of springs stretched between posts. If a pair of posts with a spring between them is 

placed too close together, the spring is compressed and tries to push the posts apart (a property 

called node repulsion). If the posts are too far apart, the spring is stretched and tries to pull the 

posts together (a property called node attraction). The algorithm is essentially a method of 

locating the posts in such a way as to balance the repulsive and attractive forces throughout the 

entire system. A number of variations on this basic idea have been proposed which seek to 

improve the ability to find the equilibrium point of the system, including the well-known FR 

algorithm of Fruchterman and Rheingold (1991).  

The system of springs can also be seen in terms of minimizing potential energy. This is 

the approach taken by Kamada and Kawai (1991). A key difference between their algorithm and 

that of Eades and Fruchterman and Rheingold is that Kamada and Kawai propose that the 

physical distance between points (in the GLA representation) should be proportional to the 

geodesic distance among the corresponding nodes in the network. Geodesic distance, known as 

degrees of separation in the popular press, refers to the number of links in the shortest path 

between a pair of nodes. Thus, the Kamada-Kawai algorithm is essentially a multidimensional 
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scaling of the associated geodesic distance matrix. The figures presented in this article were 

drawn using a variation of the Kamada-Kawai algorithm. 

Finally, a third well-known approach to graph layout involves direct optimization of 

desirable layout qualities. This is the approach taken by Blythe, Krackhardt and McGrath (1994) 

as well as Davidson and Harel (1996). Here, simulated annealing is used to maximize a complex 

function that contains a term for each desirable layout quality. For example, Davidson and Harel 

propose five principles of good layouts: (a) all nodes are visible at one time, (b) available space 

is utilized as fully as possible, (c) line lengths are of approximately uniform length, (d) line 

crossings are minimized, and (e) nodes maintain a margin of separation from nearby lines. Each 

of these qualities is quantified, and a generic optimization algorithm seeks to maximize all five 

properties simultaneously. 

Applying GLAs to visualize perceived similarity data 

GLAs are designed to work with binary data representing the presence or absence of 

relationships. To use them with valued proximity data, such as the proportions obtained in 

pilesort tasks, we must dichotomize the proximities. In effect, we must decide how similar two 

items must be in order to be linked by a line in the visualization.  In practice, we are typically 

interested in dichotomizing at various different levels in order to get a complete understanding of 

the structure of the data. GLA-based software tools such as NetDraw (Borgatti, 2002) allow you 

to work interactively with continuous data by specifying filtering criteria for when lines are 

drawn between nodes on the graph.   

For example, Figure 6 is the GLA representation of the holiday data from figure 4.  A 

line is shown between those holidays deemed similar by at least 50% of the respondents.  The 

groupings visible in Figure 4 and Figure 6 are quite similar.  For example, we see a group of 
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patriotic holidays and a group of religious holidays in both.  Figure 7 shows four GLA 

representations of the same holiday data, but with lines present based on different proportions of 

the respondents indicating the holidays were similar.  In particular, panel “d” only has lines when 

at least 75% of the respondents indicated the holidays were similar.  Naturally, there are fewer 

lines on this graph because fewer relationships meet this criterion.  However, as mentioned 

earlier, the presence of a line between Hanukah and Passover at this level, and the lack of a line 

between Christmas and Easter, highlights the stronger perceived similarity between Hanukah and 

Passover compared to Christmas and Easter within the population sampled, in this case 

undergraduates at a Catholic university. 

In our view, the addition of lines to represent relationships (filtered at a certain level) and 

the use of an optimization algorithm to locate nodes so as to maximize readability generates a 

display that is highly aesthetic and exceptionally easy to grasp.  It should be noted that this kind 

of plot is different from the practice of adding lines to an otherwise standard MDS plot, as 

described by Kruskal and Wish (1978).  In the latter approach, the positions of the items in space 

are based on the raw proximity matrix, whereas in the GLA approach the data matrix is 

dichotomized at a given cutoff level, and then path distances are computed and used as the basis 

for positioning points. Thus the position of points changes as one chooses different cutoff levels. 

In addition, unlike MDS, the GLA algorithm takes into account aesthetic criteria such as 

avoiding placing points too close to each other. Thus, a GLA representation of a proximity 

matrices produces a powerfully comprehensible and aesthetic representation, but one that is more 

abstract than the corresponding MDS picture. 
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COMPARISON OF METHODS 

 

In this section we systematically compare the MDS and GLA visualization techniques. In 

particular, we examine how the methods deal with four data issues (high dimensionality, outliers, 

violations of triangle inequality, and asymmetry) and three tool properties (interactivity, 

precision in visualizations, and node repositioning).  We discuss each of these concepts below, 

providing examples to show how each visualization technique handles such variance.   

 

Dimensionality  

In this context, dimensionality refers to the number of dimensions (or map axes) needed 

to accurately represent the data.  For example, the CITIES data used in Figure 1 are well-

represented by two dimensions. This is not surprising since they consist of distances among 

locations on a roughly flat surface. Of course, there are altitude differences, and there is 

curvature of the Earth’s surface, but for the set of US cities, these factors are minor compared to 

the variation along the dimensions of latitude and longitude.  For data which require more than 

two dimensions to adequately represent their variability, i.e., data that have higher 

dimensionality, MDS visualizations become much more difficult to interpret as well as 

impracticable to represent in print.  

Figure 8 shows a GLA representation of the same data with lines drawn between cities 

that are within 1,500 miles of each other.  The picture tells the essential story –a west coast group 

of cities and an east coast group of cities bridged from the west by Denver and bridged from the 

east by Chicago – very clearly. However, the MDS visualization in Figure 1 is richer in the sense 

that it provides a far more nuanced representation than the GLA. For example, one can tell that 
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San Francisco and Los Angeles are much closer to each other than they are to Seattle: the MDS 

representation retains degrees of proximity whereas the GLA has a more cartoonish or schematic 

feel.  

Of course, close interpretation of an MDS picture is only possible when stress is low. 

When stress is high, perhaps because of inherently high-dimensional data, MDS plots cannot be 

interpreted so closely, and the GLA representation can be interpreted more reliably. For example, 

consider again the non-metric MDS plot in figure 4 which plots the relative similarity of holidays 

according to undergraduate students.  The stress value (.171) is low enough that most researchers 

would not feel compelled to go to a difficult-to-publish 3-dimensional plot. Yet the stress is high 

enough to indicate the plot is not a completely faithful representation of the data, potentially 

misleading the viewer and introducing potentially significant ambiguity into the interpretation.  

For example, consider the location of Martin Luther King Day (MLK) on the right side of the 

plot. Its positioning between the cluster of “patriotic” holidays and the cluster containing 

Secretary’s day, Groundhog Day and April Fool’s Day suggests not only separation from those 

patriotic holidays but also some association with the other group, as if some respondents saw 

MLK day as patriotic while others saw it as one of the more frivolous holidays. One might be 

tempted to conjecture that the MDS plot is cleverly uncovering an implicit attitude (Greenwald, 

McGhee, & Schwartz, 1998) about race among some informants. Or one might hypothesize that 

respondents are placing MLK Day near the Secretary’s Day cluster because those are fairly 

recently adopted holidays, and have less lore, ritual, and ceremony than most of the other 

holidays. 

However, a GLA representation of the same data suggests that neither interpretation is 

supported by the data as MLK Day is not connected to the “new” or “whimsical” holidays at all.  
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The MDS plot, in this case, is misleading, and MLK belongs firmly in the cluster of “patriotic” 

holidays.  Returning to Figure 6, we see that the GLA filtered at 0.50 (i.e., a line is drawn 

between two holidays if at least 50% of respondents saw them as similar) shows a clear 

separation between the “patriotic” holidays (including MLK) and four other clusters of holidays, 

with no line linking MLK to the “whimsical” holidays. Lowering the cutoff to 40% (Figure 7a) 

shows that MLK Days is still not connected to those holidays, but that Flag Day does show a tie, 

which was also not obvious from the MDS representation.  Thus, the apparent intermediacy of 

MLK Day in the MDS plot (Figure 4) was actually spurious – a distortion consistent with 

moderately high stress.  

Extending the MDS to three dimensions reduces the stress to .109 and produces a more 

accurate picture (not shown).  Visualizing the 3-dimensional MDS using the MAGE software 

tool (Richardson and Richardson, 1992), which allows the user to view a 3-dimensional picture 

on a computer screen, we were able to see that MLK Day was positioned firmly with the 

patriotic holidays and showed no tendency to drift toward the cluster with Secretary’s Day.  

While tools like MAGE (Richardson & Richardson, 1992) are available for visualizing 

and interpreting three-dimensional data interactively, they do not always translate well to static, 

two-dimensional media, such as journals.  Further, beyond three dimensions it becomes 

impossible to visualize the data at all.  In these cases, GLA representations are often more 

“economical”, representing high-dimensional information nicely in two dimensions. Even if 

multiple diagrams using different cutoff levels are needed, this is still easier than schemes for 

printing 3-dimensional data, such as adding perspective cues or printing scatterplots of each 

dimension against every other.  
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In addition, the GLA has a certain clarity in its relationship to the data: a line is drawn 

between two items only if their similarity is greater than a user-specified clarity. Therefore, no 

matter where the points are placed, it is always clear whether or not any given pair is closer than 

some cutoff. On the other hand, information regarding how much closer is not represented.  

In summary, with respect to dimensionality, our view is that if the data can be 

represented well in two dimensions, an MDS plot in dimensions with low stress provides a rich 

visualization of the data that encodes all of the subtlety of the raw data in the pattern of 

distances. As the underlying dimensionality of the data increases, however, GLAs, which present 

a kind of stylized or simplified view of the data, provide a way of representing the essential 

features of complex data on a 2-dimensional page without distortion. 

Outliers 

 Since MDS attempts to represent all dyadic relationships present in the data at once, any 

items which have unusual relationships to the rest of the data affect the overall picture.  In the 

holiday data we have been presenting, there were actually four additional holidays included in 

the pilesort task:  Ramadan, Rosh Hashanah, Kwanza, and Cinco de Mayo.  However, it turned 

out that none of these holidays was ever grouped with other holidays or with each other.  They 

were either indicated as unique or unknown by the respondent.  The non-metric MDS 

representation of this data, when these holidays are included, is presented in Figure 9.  As you 

can see, the four outliers are scattered across the top, while the bottom approximates the same 

structure as the representation in Figure 4, only compressed to use less of the plot area.  Because 

there are four holidays which are more dissimilar to the rest of the data (and each other) than 

most of the other relationships, almost half of the MDS plot is devoted to setting them apart from 
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the other data.  The stress of this MDS representation is also noticeably higher at 0.207 instead of 

0.171.   

 Compare the difference between Figure 4 and Figure 9, with the difference between 

Figure 6 and Figure 10.  Here, because relationships are filtered at a certain level, holidays 

without any relationship at that strength are simply set aside along the left side of the graph.  In 

graph terms, these are termed “isolates” and do not affect the positioning of the other nodes in 

the graph.  Thus, the representation of relationships in the data are automatically unaffected by 

the outliers in the data in a GLA, whereas we had to remove the items from the similarity matrix 

input to MDS in order to not have the outliers distort the overall representation of the other 

relationships. 

Transitivity  

MDS uses distance in Euclidean space to represent relationships.  Euclidean distances 

have certain properties. Data that do not conform to these properties cannot be accurately 

represented in a Euclidean space.  One of these properties is triangle inequality (also referred to 

as transitivity), which states that d(i,j) ≤ d(i,k) + d(k,j).  This means that if an object k is close to 

both i and j, then in a Euclidean (e.g., physical) space there is a limit to how far away i and j can 

be from each other. Data in which the relationships among the items are not so constrained 

simply cannot be represented in a Euclidean space without distortion.  

In Figure 4 (the non-metric MDS plot of the holiday data), Thanksgiving is somewhat 

isolated toward the top of the graph just left of center.  A look at the raw data in Table 3 indicates 

that Thanksgiving was perceived as most similar to Halloween, which is on the bottom side of 

the plot.  Although we would typically expect Thanksgiving to be positioned close to Halloween, 

looking more closely at the data in Table 3, reveals that Thanksgiving was also perceived as 
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dissimilar from St. Valentine’s Day, but that Halloween and St. Valentines Day were perceived 

as similar.  Consequently, Thanksgiving was positioned far away from St. Valentine’s Day, and 

therefore from Halloween as well.  Because MDS uses distances, which are transitive, the 

relationship between Thanksgiving and Halloween is constrained by each of their relationships 

with St. Valentine’s Day.  Thanksgiving cannot be simultaneously close to Halloween and far 

from St. Valentine’s Day because those two are close to each other. 

GLAs are not troubled by violations of the triangle inequality law. To be more specific, 

force-directed methods such as Fructerman-Rheingold are not based on Euclidean spaces and so 

are not bothered by intransitivity. Other methods, like Kamada-Kawai, explicitly construct their 

own geodesic distance metric from the dichotomized data, guaranteeing that the transformed 

data, based on “degrees of separation” or “shortest path length” at any given level of similarity, 

conform to distance properties. As a result, GLA representations do a nice job with intransitive 

data. Figure 7a, for example, has no problem conveying the intransitive relationships between 

these three items because the edges are drawn to show that Halloween has a relationship with 

both Thanksgiving and St. Valentine’s Day, but the lack of a line indicates the lack of a 

relationship between the latter pair. 

The problems of intransitivity are often exacerbated when the number of items being 

analyzed or compared increases.  The greater the number of items, the more opportunities there 

are for intransitive triads in the data.  However, some data frequently visualized with MDS or 

GLAs are inherently transitive.  For example, correlations among a set of variables never violate 

the triangle inequality property, independent of the number of variables correlated.  When data 

are not intransitive, both MDS and GLAs can represent the data visually without distortion, but 

when they are intransitive, GLAs will provide a more accurate representation. 
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Symmetry  

Another property of Euclidean distances is symmetry, which states that the distance from 

a to b is the same as the distance from b to a.  For many forms of cultural domain analysis, this 

does not present a problem, as the data are intrinsically symmetric.  In fact, all of the datasets 

presented in this paper are symmetric.  However, there are proximity matrices that do exhibit 

asymmetry. One example is the set of asymmetric measures of variable association, such as 

lambda (λ) or ordinary regression coefficients. Another example is the set of directional semantic 

relations among items in a domain, such as “cause of”, “precedes”, or “may substitute for”.   

As noted by Kruskal and Wish (1978), MDS is not well suited to asymmetric data 

because in the Euclidean space it constructs the distance d(x,y) equals the distance d(y,x) and so 

the only way to get low stress is if both the proximities p(x,y) and p(y,x) are the same. When the 

data are asymmetric, the best MDS can do is spread out the error, and locate x and y so that the 

distance between them is a compromise of the two input proximities.  

In contrast, GLA representations effectively ignore directionality since if either p(x,y) or 

p(y,x) are greater than the user-specified threshold, there will be a line between x and y. 

Directionality can then indicated by adding arrowheads, but these play no part in the calculations 

of node coordinates. Consistent with Kruskal and Wish (1978), we find that MDS is ill-suited to 

asymmetric data, and GLAs provide a more appropriate representation. 

 

 
Interactivity 

In the previous sections, we compared MDS and GLA techniques on how they handle data with 

respect to different properties (dimensionality, outliers, transitivity, and symmetry).  In these 
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sections, we focus on the ways that tools based on these techniques compare when interrogating 

a dataset. 

Multidimensional scaling is not a particularly interactive technique. There are few 

options that generate different maps: one can choose between metric and non-metric, and one 

can choose the number of dimensions, although practical considerations typically constrain the 

choice to just two or maybe three dimensions. We can preprocess the data in various ways, such 

as taking logs or normalizing away marginal effects, but these kinds of transformations are 

normally dictated by the needs of the data, rather than providing ways to see the data from 

different perspectives.  In this sense, for any set of data, MDS techniques typically only generate 

one publishable visualization. 

GLAs on the other hand, lend themselves to highly interactive implementations. The 

algorithms require dichotomous data as input. As a result, tools implementing GLAs, such as 

NetDraw (Borgatti, 2002), make it easy to cut the data at different levels, affording multiple 

views of the data. In fact, we commonly investigate the structure of the data by systematically 

visualizing the data at increasing levels of relational strength, to understand when the global 

structure breaks down into a set of individual clusters, and then when those, in turn, break down 

to smaller clusters.  

As an example, revisit Figure 7 which show relationships between holidays at levels of 

0.40 (panel a), 0.45 (panel b), 0.50 (panel c), and 0.75 (panel d).  These figures show how 

interactivity can help uncover the structure in the data, and also how the GLA-enabled tool 

separates drawing lines from locating points in space.  Filtering at different levels, the researcher 

can determine the strength of relationships between nodes indicated by the existence of lines.  

Looking at panel a, the two components in the graph both seem somewhat eclectic.  Clearly the 
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component on the left has some patriotic component, but also has family/role oriented holidays 

connected to it.  The component on the right clearly has most of the holidays based in religious 

tradition, but New Years and Thanksgiving are not specifically religious.  By increasing the 

strength of the relationship represented by from 0.40 edges to 0.50 in panel c, we see Halloween, 

New Years, and Thanksgiving as all unique holidays, and the remaining clusters are easily 

identified (e.g., patriotic, religious, etc.)  The ability to slice the data representation at different 

levels helps the researcher uncover the underlying structure in the data. 

 

Specificity and precision in visualization 

Similarly, while MDS attempts to represent all dyadic relationships in one visual 

representation, and sometimes has to compromise based on some of the data properties described 

above (e.g., transitivity), GLAs do not compromise and always represent the presence or absence 

of relationships at a certain level faithfully.  In this sense, they are better suited to answering 

questions about the data at specific levels of precision.  For example, returning again to the MDS 

plot of US cities in Figure 1, it is difficult to determine whether Miami is within 1,500 miles of 

either Boston or Chicago, or to which it is closer.  However, using a GLA and filtering at 1,500 

miles (see Figure 8), the presence of a line between Miami and Chicago, and the absence of the 

same between Miami and Boston makes the answer to both questions easily determined visually. 

As such, GLAs are also very well suited to analyze data when the researcher is particularly 

interested in the existence or absence of relationships at precise levels, and when accurate 

answers to precise questions are more important than a single representation of the range and 

relative strength of relationships considered along a continuum. 

Manual repositioning of nodes 
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It is also important to reiterate that in a GLA representation the physical distances on the 

map do not bear an exact relationship to the input data. The only information conveyed in the 

graph is dichotomous, which items are tied to each other at a specified level of similarity (or 

dissimilarity). Although GLA-based tools use positions in an attempt to maximize the clarity of 

the graph, the researcher has the option to arbitrarily “re-position” the nodes (or clusters of 

nodes) in GLA software by simply moving nodes to allow for a clearer view of nodes and the 

relationships between them, or to highlight specific relationships.  Unlike MDS, which relies 

entirely on the distance between nodes to represent relationships, GLA-enabled tools rely on 

lines to represent the presence or absence of a relationship, and positioning is used for aesthetic 

purposes.  Of course, researchers accustomed to interpreting MDS representations will need to 

remind themselves of the fact that the relative position of two nodes is optimized for clarity and 

not to convey raw proximity data. 

Table 4 summarizes the major points from the systematic comparison of MDS and GLA 

representations in the previous sections. 

 
Conclusion 

 In this paper, we have considered two methods for visualizing proximity data:  traditional 

multidimensional scaling and newer graph layout algorithms. For data that have inherently low 

dimensionality and conform to the symmetry and triangle inequality properties of metric space, 

MDS provides very rich representations that encode a great deal of detail about the data. As data 

depart from this ideal, MDS continues to yield insight into broader features of the dataset – the 

global structure – but can be inaccurate and misleading in the details. GLAs sacrifice specificity 

for a more cartoon-like schematic representation of the data, but on that is always completely 

accurate. At any given moment, the GLA can only show which pairs of items have a proximity 
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level greater than a given threshold (which constitutes a loss of specificity), but the 

representation is never inaccurate in representing this. This approach is economical and can 

render visible aspects of structures that in MDS would require higher dimensional 

representations. When working with data that violate metric space properties, we recommend the 

GLA representations. In addition, we suggest that the interactive capability of GLA tools make 

them particularly attractive in familiarizing oneself with the full character of a dataset.
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Table 1:  US Cities Travel Distances 

 

             BOST   NY   DC MIAM CHIC SEAT   SF   LA DENV 

             ---- ---- ---- ---- ---- ---- ---- ---- ---- 

     BOSTON     0  206  429 1504  963 2976 3095 2979 1949 

         NY   206    0  233 1308  802 2815 2934 2786 1771 

         DC   429  233    0 1075  671 2684 2799 2631 1616 

      MIAMI  1504 1308 1075    0 1329 3273 3053 2687 2037 

    CHICAGO   963  802  671 1329    0 2013 2142 2054  996 

    SEATTLE  2976 2815 2684 3273 2013    0  808 1131 1307 

         SF  3095 2934 2799 3053 2142  808    0  379 1235 

         LA  2979 2786 2631 2687 2054 1131  379    0 1059 

     DENVER  1949 1771 1616 2037  996 1307 1235 1059    0 
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Table 2:  Game Playing Among Wiring Personnel 

 

                          1 1 1 1 1 

        1 2 3 4 5 6 7 8 9 0 1 2 3 4 

        I I W W W W W W W W W S S S 

        - - - - - - - - - - - - - - 

  1 I1  0 0 1 1 1 1 0 0 0 0 0 0 0 0 

  2 I3  0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  3 W1  1 0 0 1 1 1 1 0 0 0 0 1 0 0 

  4 W2  1 0 1 0 1 1 0 0 0 0 0 1 0 0 

  5 W3  1 0 1 1 0 1 1 0 0 0 0 1 0 0 

  6 W4  1 0 1 1 1 0 1 0 0 0 0 1 0 0 

  7 W5  0 0 1 0 1 1 0 0 1 0 0 1 0 0 

  8 W6  0 0 0 0 0 0 0 0 1 1 1 0 0 0 

  9 W7  0 0 0 0 0 0 1 1 0 1 1 0 0 1 

 10 W8  0 0 0 0 0 0 0 1 1 0 1 0 0 1 

 11 W9  0 0 0 0 0 0 0 1 1 1 0 0 0 1 

 12 S1  0 0 1 1 1 1 1 0 0 0 0 0 0 0 

 13 S2  0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 14 S4  0 0 0 0 0 0 0 0 1 1 1 0 0 0 
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Table 4 

Input Similarity Matrix for Holiday Data 

               1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 

               Apr Chr Col Eas Fat Fla 4th Gro Hal Han Lab MLK Mem Mot New Pas Pre StP StV Tha Vet Yom Pat Sec 

               --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 

  April_Fools  .00 .00 .19 .15 .22 .41 .11 .67 .26 .00 .26 .22 .30 .30 .11 .11 .19 .33 .19 .00 .19 .04 .33 .56 

    Christmas  .00 .00 .00 .74 .11 .04 .11 .11 .30 .70 .04 .11 .04 .11 .37 .48 .11 .19 .33 .37 .00 .44 .00 .04 

     Columbus  .19 .00 .00 .00 .22 .44 .30 .19 .15 .04 .41 .59 .48 .22 .04 .04 .63 .19 .07 .26 .70 .19 .56 .26 

       Easter  .15 .74 .00 .00 .15 .04 .15 .00 .26 .52 .04 .00 .15 .22 .26 .63 .00 .22 .22 .41 .00 .48 .07 .15 

      Fathers  .22 .11 .22 .15 .00 .15 .19 .19 .19 .04 .19 .22 .15 .93 .11 .07 .19 .15 .19 .11 .15 .00 .15 .33 

         Flag  .41 .04 .44 .04 .15 .00 .37 .41 .07 .04 .52 .33 .56 .15 .04 .04 .59 .19 .07 .07 .67 .04 .81 .33 

  4th_Of_July  .11 .11 .30 .15 .19 .37 .00 .04 .15 .07 .44 .22 .56 .11 .15 .07 .37 .26 .19 .26 .41 .07 .41 .04 

    Groundhog  .67 .11 .19 .00 .19 .41 .04 .00 .19 .11 .26 .33 .19 .19 .22 .00 .33 .26 .30 .00 .19 .04 .26 .52 

    Halloween  .26 .30 .15 .26 .19 .07 .15 .19 .00 .15 .07 .04 .00 .19 .37 .11 .04 .26 .48 .48 .15 .19 .07 .15 

     Hanukkah  .00 .70 .04 .52 .04 .04 .07 .11 .15 .00 .04 .11 .04 .04 .22 .78 .11 .19 .26 .22 .00 .74 .00 .04 

        Labor  .26 .04 .41 .04 .19 .52 .44 .26 .07 .04 .00 .26 .67 .11 .11 .04 .41 .26 .11 .19 .52 .11 .48 .30 

          MLK  .22 .11 .59 .00 .22 .33 .22 .33 .04 .11 .26 .00 .37 .22 .15 .00 .70 .15 .22 .04 .44 .04 .37 .30 

     Memorial  .30 .04 .48 .15 .15 .56 .56 .19 .00 .04 .67 .37 .00 .22 .07 .15 .56 .30 .07 .22 .70 .07 .67 .30 

      Mothers  .30 .11 .22 .22 .93 .15 .11 .19 .19 .04 .11 .22 .22 .00 .11 .15 .19 .19 .19 .11 .15 .00 .19 .41 

    New_Years  .11 .37 .04 .26 .11 .04 .15 .22 .37 .22 .11 .15 .07 .11 .00 .11 .11 .33 .44 .30 .00 .11 .00 .07 

     Passover  .11 .48 .04 .63 .07 .04 .07 .00 .11 .78 .04 .00 .15 .15 .11 .00 .00 .19 .11 .22 .00 .78 .07 .15 

   Presidents  .19 .11 .63 .00 .19 .59 .37 .33 .04 .11 .41 .70 .56 .19 .11 .00 .00 .22 .22 .11 .70 .04 .63 .26 

   St_Patrick  .33 .19 .19 .22 .15 .19 .26 .26 .26 .19 .26 .15 .30 .19 .33 .19 .22 .00 .52 .07 .19 .15 .19 .26 

St_Valentines  .19 .33 .07 .22 .19 .07 .19 .30 .48 .26 .11 .22 .07 .19 .44 .11 .22 .52 .00 .22 .04 .07 .00 .11 

 Thanksgiving  .00 .37 .26 .41 .11 .07 .26 .00 .48 .22 .19 .04 .22 .11 .30 .22 .11 .07 .22 .00 .26 .26 .19 .04 

     Veterans  .19 .00 .70 .00 .15 .67 .41 .19 .15 .00 .52 .44 .70 .15 .00 .00 .70 .19 .04 .26 .00 .15 .81 .22 

   Yom_Kippur  .04 .44 .19 .48 .00 .04 .07 .04 .19 .74 .11 .04 .07 .00 .11 .78 .04 .15 .07 .26 .15 .00 .07 .00 

     Patriots  .33 .00 .56 .07 .15 .81 .41 .26 .07 .00 .48 .37 .67 .19 .00 .07 .63 .19 .00 .19 .81 .07 .00 .37 

  Secretaries  .56 .04 .26 .15 .33 .33 .04 .52 .15 .04 .30 .30 .30 .41 .07 .15 .26 .26 .11 .04 .22 .00 .37 .00 
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Table 3: Summary Comparison of MDS and GLA 
 

 Mutlidimensional Scaling 
(MDS) 

Graph Layout Algorithm 
(GLA) 

Dimensionality of Data Excellent for representing data 
of low dimensionality (less 
than or equal to three).  As 
dimensionality increases 
beyond three MDS plots are 
more difficult to interpret and 
impracticable to represent in 
print 

Well suited for complex data of 
dimensionality greater than 2 

Dealing with Outliers Outliers can cause distortion in 
MDS plots and increase levels 
of stress 

Provides researchers with the 
opportunity to easily identify 
outliers at different levels of 
strength and remove them if 
necessary 

Transitivity (triangle 
inequality law) 

Intransitivity in a data set 
causes distortion in MDS plots 
and increases levels of stress 

Well suited to represent 
intransitive data 

Symmetry Unable to represent 
asymmetrical relationships 

Well suited to represent 
asymmetric relationships at 
multiple levels of analysis 
 
Directionality of relationships 
is represented using arrow 
heads 
 

Interactivity of Tool Not suited for interactivity Provides researchers with the 
opportunity to easily 
investigate relationships at 
different levels of strength 

Precision in visualization Compromises to produce one 
visualization that best 
represents all dyadic 
relationships and their strength 
at once 

Represents existence and 
nonexistence of relationships at 
a precise level completely 
accurately, but provides no 
additional information about 
relative “degree” or strength of 
those relationships. 

Node positioning MDS represents similarities 
and differences among a set of 
items as Euclidean distances in 
an n-dimensional space 

Placement of nodes is not 
determined by Euclidean 
distance and does not carry 
meaning.  This provides the 
researcher the opportunity to 
reposition nodes to improve the 
readability of the graph  
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Figure 1 
Metric MDS plot of US Cities Data 

 
(Stress = .014) 
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Figure 2 
Non-Metric MDS plot of US Cities 

 
(Stress = .000) 
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Figure 3 
Metric MDS Plot of Holiday Data 

 
(Stress = .269) 
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Figure 4 
Non-Metric MDS plot of Holiday Data 

 
(Stress = .171) 
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Figure 5 
GLA Representation of Game Playing Data  
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Figure 6 
GLA Representations of Holiday Data (filtered at .50) 
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Figure 7 
GLA representation of Holidays Data with various filterings 

  
(a)  Filtered at 0.40 (b) Filtered at 0.45 

(c) Filtered at 0.50 (d) Filtered at 0.75 
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Figure 8 
GLA Representation of US Cities (filtered at 1,500 miles) 
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Figure 9 
MDS Plot of Holidays data with Outliers (Stress = 0.207) 
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`Figure 10 
GLA Representation of Holidays data with Outliers 

(filtered at 0.50) 
 

 


