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A COMMENT ON DOREIAN’S REGULAR EQUIYALENCE IN 
SYMMETRIC STRUCTURES 

Steve BORGATTI * 
Unruersrty of CaIrfornra, Irvrne 

I read with interest Pat Doreian’s recent article (1987) on the problem 
of running REGE (White 1984) on symmetric matrices. As many 
people have discovered to their chagrin, the problem is that in a 
symmetric matrix, REGE finds that all actors except isolates are 
equivalent to all others no matter what the data. This is troubling in 
cases where clear differences in structural position appear to exist 
between some actors. Whereas for directed graphs the results of REGE 
correspond closely with intuitive notions of role (Nadel 1957; Sailer 
1978; Faust 1985), for symmetric data this correspondence seems to 
break down. Doreian’s solution, which I call the “Doreian Split”, is 
creative and practical, and yields intuitively satisfying results. 

If there really is a problem, that is. Doreian illustrates the situation 
with the graph shown in Figure 1. Most people immediately spot four 
groups of equivalent actors: (a), (b, c), (d, - - g), and (h * - 0). Actors 
within each group are similarly related to members of other groups, a 
condition consistent with many intuitive notions of role, and with the 
notion of regular equivalence (White and Reitz 1983) in particular. 
Doreian explains it this way: 

In this structure there are 4 equivalence classes: (i) nodes h through 
o are equivalent; (ii) nodes d through g are equivalent; (iii) nodes b 
and c are equivalent; (iv) and a is equivalent only to itself. Nodes h 
and i are connected to d in the same way that nodes 1 and m are 
connected to f and, finally, nodes n and u are connected to g in the 
same way. It is clear also that nodes d and e are connected in the 
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Figure I 

same way to b as nodes f and g are connected to c. Finally, b and c 
are identically linked to s. The definition of regular equivalence gives 

exactly this set of equivalence classes. However, when REGE is used, 
all nodes are returned as equzvalent to each other. (Doreian 1987: 91, 
italics added) 

The situation, then, is that the intuitively satisfying four-group parti- 
tion is consistent with the algebraic definition of regular equivalence, 
but the operational implementation (REGE) gets it wrong. 

Or does it? The relevant White and Reitz theorems and definitions 
are as follows: 

Dejinztion 6. A full graph homomorphism f: G -+ G’ is regular if 
and only if for all a, b in P, 

f (a)R’f( b) implies there exist c, d in P such that 
cRb, aRd, f(c) =f(a) and f(d) =f(b) 

(White and Reitz 1983: 197) 

Defznztion II. If G = (P, R) and = is an equivalence relation on P 
then = is a regular equivalence if and only if for all a, b, c, in P, a 
= b implies 
(i) aRc implies there exists d E P such that bRd and d = c; and 
(ii) cRa implies there exists d E P such that dRb and d = c. 

(White and Reitz 1983: 200) 

Theorem 2C. The equivalence induced by a regular graph homomor- 
phism is a regular equivalence relaion and conversely every regular 
equivalence relation is induced by some regular homomor- 
phism. 

Now consider the following partition 

BLOCKMODEL A : 

(4 W (4 (4 (4 (f) (g) (h, i) (1, 

(White and Reitz 1983: 201) 

on the graph in Figure 1: 

k) (I, m) (n, 0) 
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Is this partition consistent with the notion of regular equivalence? Yes. 
Blockmodel A represents structural equivalence (in the sense of Lor- 
rain and White 1971), and White and Reitz prove (1983: 199) that all 
structural equivalences are also regular equivalences. 

Consider also this partition, 

BLOCKMODEL B: 

(4 W (4 (4 (e) (f) (8) (h) G) (A (4 U) (m) (4 to) 

and more importantly, this one: 

BLOCKMODEL C: 

(a, b, c, d, e, f, g, k 4 J, k 4 m, n, 0) 

All three blockmodels, including the one where all points are equivalent 
to all others, are consistent with regular equivalence. Let us consider 
why this is so. In plain English, the definitions and theorems above 
amount to a description of groups or blocks of equivalent actors such 
that if there is a directed tie between a member of one block with a 
member of another block, then at the block level there is a correspond- 
ing tie between the two blocks. Furthermore, if such a tie exists at the 
block level, then every member of each block will exhibit a correspond- 
ing tie, identically directed, with one or more members of the other 
block. In even plainer English, if it can be said that block A is doing it 
to block B, then every member of A is doing it to some member of B, 
and every member of B is having it done to by someone in A. 

Let’s check that blockmodel C is really consistent with regular 
equivalence. It maps all points to just one block (call it x) with a single 
bi-directional tie to itself (R’: x - x). Is everyone in x doing it to 
someone in X? Yes. Is everyone in x receiving it from someone in x? 
Yes. Therefore, we have a regular equivalence. 

The same will be true of the other partitions noted above, plus a few 
others not shown. So what does this mean? Clearly, a graph may have 
several regular equivalences, nested hierarchically within each other, 
ranging from the overly exclusive (each actor equivalent only to him- 
self), to the overly inclusive (all actors equivalent to all others). How- 
ever, White and Reitz show that 

Theorem 3C. The collection of all regular equivalence relations on a 
graph has a maximal element. 

(White and Reitz 1983: 199) 
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In the case of the graph in Figure 1, the maximal regular equivalence 
relation is the one that maps all points to a single block. The REGE 
algorithm, designed to find the maximal equivalence relation, is not 
technically in error here. The problem is not in the algorithm, but in 
the definition. Now let us consider Doreian’s discoveries in this light. I 
can’t honestly follow the mathematical argument, but I believe him 
when he concludes: 

It follows that the decomposition of a symmetric structure into two 
asymmetric structures, by the use of centrality scores as attributes of 
the nodes, preserves regular equivalences. (Doreian 1987: 97) 

But it doesn’t preserve all of them, for when he applies his method to 
the graph in Figure 1, it does not find the maximal regular equivalence. 
Instead, it finds another one. The question is, which one? For Figure 1, 
it finds a good one, the next-most-maximal-yet-not-trivial one. But 
does it always choose the next-most maximal one? What exactly does it 
do when there are no exact equivalences to be found? One of these 
questions is answered by the graph in Figure 2. One set of regular 
equivalences on this graph is as follows: 

I. (a) (b) (c) (d) (e) (f) 
2. (a) (b) (c) (d, e) (f) 
3. (a) (b, c) (d, e, f) 
4. (a, b, c, d, e, f) 

Clearly, the best ones are #2 and #3, and, if one is persuaded by the 
notion that two actors may play the same role and yet not know the 
same number of people, # 3 is the better of the two. Doreian’s method, 
however, gives #2, which represents structural equivalence (and are the 
orbits of the graph as well). The reason is that the Doreian Split 
depends upon centrality (either betweenness- or closeness-based) and 
centrality is sensitive to degree (Freeman 1978). Therefore, the only 
regular equivalences that can be preserved by the Doreian Split are 
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Figure 2 
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those that also group actors by degree. This may be a problem because 
researchers often turn to regular equivalence algorithms precisely be- 
cause it is insensitive to degree: two judges are thought to play the 
same role even if they see different numbers of criminals (cf. Sailer 
1978). 

To use Doreian’s method to detect degree-free regular equivalences, 
it is necessary to modify the measure of centrality. There are several 
ways to do it. For example, instead of betweenness centrality, one 
might compute what I call generation centrullty. In a directed, perfectly 
hierarchical graph, generation centrality is a function of the number of 
levels above and below a given actor. In general, it is a function of the 
longest geodesic distance to and from an actor. For symmetric or 
undirected data, this reduces to a single number. If this version of 
centrality is used, Doreian’s method gives equivalence #3 above, as 
desired. Numerous other distance and/or centrality measures work as 
well. 

However, it is not always the case that one wants to ignore degree. 
Everett (1985) has argued that the equivalence arising from the orbits 
of a graph is useful representation of role. Everett describes this 
equivalence as follows: 

An automorphism of graph G( V, R) is a permutation r of the 
vertices V which has the property that (a, b) E R if and only if 
(~(a), r(b)) E R. Note that th e set of all automorphisms of G form 
a group under the operation of composition which is denoted by 
Aut( G). 

Two vertices a, b E V belong to the same orbit of G if and only if 
~(a) = b for 7r E Aut(G). 

It is a simple exercise to verify that belonging to the same orbit is 
an equivalence relation. 

The above definitions can easily be extended to networks in which 
a variety of different relations are acting on the same vertex set. 

Obviously, any two vertices which are structurally equivalent will 
belong to the same orbit. Hence this new condition of role similarity 
is weaker than structural equivalence. 

It is stronger than regular equivalence as shown by the next 
theorem. 

Theorem I. The equivalence relation of belonging to the same orbit 
of a graph G( I’, R) is a regular equivalence. 
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Proof: Suppose a and b belong to the same orbit. Let c E V and 
suppose aRc. Since a and b belong to the same orbit, there exists a 
T E Aut(G) such that r(a) = b. Hence bRr( c) then we satisfy the 
first part of the condition for regular equivalence. The second part 
for cRa is similar. 

A consequence of this theorem is that our definition of role 
similarity differentiates between actors playing similar roles to dif- 
ferent numbers of other actors. Hence if we consider the example of 
parents and children, structural equivalence would place together 
parents of the same children. Regular equivalence would place 

together all parents. The orbits would consist of all parents with an 
equal number of children. (Everett 1985: 355) 

Orbits, then, are regular equivalences that preserve, among other things, 
degree. While it would be difficult to prove that the unmodified 
Doreian Split always finds the orbits of a graph, it is at least apparent 
that its results will be similar (and will always entail the orbits). 

Summary 

The Doreian Split implements a strengthening of regular equivalence 
that enables it to find meaningful structure in symmetric graphs. It is 
not, however, a new algorithm for finding maximal regular equiv- 
alences. Rather, it detects something intermediate between Lorram and 
White structural equivalence and White and Rertz regular equivalence. 
The properties of the Doreian equivalence are consistent with those of 
“orbit” or “automorphic” equivalence, but we cannot be sure they are 
one and the same. In fact, we cannot even be sure that the Doreian 
Split always finds the same regular equivalence. 

Perhaps what is really needed is to treat the detection of regular 
equivalence as a hierarchical clustering problem. Instead of blmdly 
picking an unknown regular equivalence, as does the Doreian Split, and 
instead of arbitrarily choosing the maximal regular equivalence, as does 
REGE, we would prefer to see the whole tree of nested equivalences. 
Then we could choose the level of data reduction appropriate for the 
analysis at hand. 

For asymmetric data, we would generally choose the maximal ele- 
ment, as REGE assumes, but not always: in some cases we would want 
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to separate otherwise equivalent actors on the basis of degree, central- 

ity, or some other network attribute. For example, in some applications 
it would not make sense for two actors to be perfectly equivalent, yet 
one be highly central while the other entirely peripheral. In such cases 
we would want to drop down to a less abstract equivalence that 
preserved some of the more basic graph measurements. Sometimes we 
would even want the next-to-minimal equivalence, which would nor- 
mally be Lorrain and White’s structural equivalence (Lorrain and 
White 1978; Burt 1983). 

For symmetric data, we would always disregard the maximal regular 
equivalence, but would still be faced with a choice among the re- 
maining equivalences. 

And in graphs where no perfect equivalence existed, we must decide 
how to trade off the fit of a given partition against the amount of data 
reduction achieved. 
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