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An extension of regular colouring of graphs 
to digraphs, networks and hypergraphs * 

Martin G. Everett 
University of Greenwich, London, UK 

Stephen P. Borgatti 
University of South Carolina, Columbia SC 29208, USA 

The use of regular graph colouring as an equivalent simple definition for regular equivalence is 
extended from graphs to digraphs and networks. In addition new concepts of regular equivalence 
for edges and hypergraphs are presented using the new terminology. 

1. Introduction 

Everett and Borgatti (1991) have suggested an alternative formulisa- 
tion of Regular Equivalence (White and Reitz 1983) using similar 
ideas to classical graph colouring. This fo~ulisation provides a simple 
representation of regular equivalence without the need to resort to 
complicated algebraic constructions. In this paper we shall extend the 
ideas in Everett and Borgatti’s paper to digraphs and networks in 
keeping with White and Reitz’s original usage of regular equivalence. 
In addition, using the new terminology, we examine how regular 
equivalence can be extended to edges and hypergraphs. 

We first introduce the idea of regular colouring for graphs. (Note 
that Everett and Borgatti (1991) call this role-colouring.) Let C(V, E) 
be an undirected graph (self-loops are permissible) with vertex set V 
and edge let E. The neighbourhood N(u) of a vertex u E Y is the set 
of all verticles adjacent to U. So that N(U) = (x:(u, X) EE). 
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of Greenwich, Wellington Street, London SE18 6PF, UK. 
* This paper is based on Chapters 2 and 3 of Borgatti (1989). 
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A colouring of a graph G is an assignment of colours to the vertices 
of G: if u E V then we denote the colour of u by C(U). 

If S is a subset of the vertices of a graph then we define the colour 
set of S written C(S), (or spectrum of S) as the set of all colours 
assigned to the vertices of S. 

If we examine the coloured graph in Fig. 1 we see that vertex 1 has 
been coloured red, vertices, 2, 4 and 5 green and the remainder black. 
The neighbourhood of vertex 2 is the set of vertices (1, 4, 5}, i.e. 
N(2) = {l, 4, 5). The spectrum of 1 is red; i.e. C(1) = {Red}, the 
spectrum of {l, 6, 7) is (red, black}. We shall require the spectrum of a 
neighbourhood e.g. C(N(2)) = {red, green). 

The colouring of a graph induces a partition of the vertices. We 
assume all vertices coloured the same belong to the same class. 

A colouring of a graph is a regular colouring if whenever two 
vertices are coloured the same the spectrum of their neighbourhoods 
is the same, i.e. G(V, E) is regularly coloured if and only if for all c’, 
WfzV 

C(u) = C(w) * C(N(u)) = C(N(w)). 

If we examine Fig. 1 we see that vertex 6 and vertex 7 are coloured the 
same (black) and that C(N(6)) = C(N(7)) = {green, black), hence this 
pair of vertices satisfies the condition. However, we do not have a 

G G G 

Fig. I 
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Fig. 2. 

regular colouring since there are other black vertices whose neigh- 
bourhoods have a different spectrum; we see for example that 
C( N(8)) = {black}. 

An alternative colouring, which is regular is shown in Fig. 2. In this 
colouring the spectrum of the neighbourhood of any red vertex is 
green, i.e. C(N(l)) = C(iV(5)) = C(N(7)) = C(N(8)) = {green) and the 
spectrum of the neighbourhood of any green vertex is red and green. 
i.e. C(N(2)) = C(N(3)) = C(N(4)) = C(N(6)) = {green, red}. 

The colour-image graph G’(C(V), E’) of a coloured graph G(V, E) 
has the spectrum of I/ as its vertices; two vertices are adjacent in G’ if 
there exists an edge between the colours in G. Figure 3 is the 
colour-image graph of Fig. 1 and Fig. 4 is the colour-image graph of 
Fig. 2. If we examine Fig. 3 we see that the edge connecting green and 

R 

Fig. 3. 
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Fig. 4. 

red implies the existence of a red-green edge in Fig. 1 (for example 
{I, 2) or 11, 411, but note that there may be green vertices which are 
not connected to red vertices (vertex 5 for example). In a regular 
colouring this cannot occur; in Fig. 4 the fact that red and green are 
adjacent means that every red must be adjacent to some green and 
every green must be adjacent to some red. This fact is further 
explored in the following theorem. 

Theorem 1. Let G(V, E) be a coloured graph and G’(C(V)E’l be the 
colour-image graph. Then the colouring of G is a regular colouring if 
and only if for all u E V, C(N(u)) = N(C(u)). [Note that for each 
vertex U, C(u) will be a vertex in G’.] 

Proof. We note that in the colour-image graph G’, two colours are 
adjacent if there exists an edge connecting the colours in G; it follows 
that for all u E I/ C(N(u)) cN(C(u)). Suppose that the colouring is 
regular and there exists a u E V such that C(N(u)) # N(C(u)). Hence 
there is some colour A s.t. A EN(C(U)) but A e C(N(u)). If A E 
MC(u)) then there exists y E V s.t. C(y) = C(u) and A E C(N(y)). 
Since we know that A @ C(N(u)) this contradicts the regularity of the 
colouring. 

Conversely suppose that for all u E V(C(N(u)) =N(C(u)) if C(X) 
= C(y) then N(C(x)) =N(C(y)) and hence C(N(x)) = C(N(y)) and 
the colouring is regular. 

2. Digraphs 

The extension to digraphs is reasonably straight forward, we just need 
to take account of directionality in the construction of the neighbour- 
hoods. Let G(V, E) be a directed graph. We defined the in- 
neighbourhood of a vertex u as the set of vertices from which u 
receives connections, and the out-neighbourhood as the set of vertices 
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Fig. 5. 

which receive connections from u; these are denoted by Ni(U) and 
N,(U), respectively. So that 

Ni(U) = {X: (X, U) EE} 

N,(u) = {x: (u, x) EE}. 

We can now define a regular colouring of a digraph G as a colouring 
in which if two vertices are coloured the same then their respective 
in-neighbourhoods and out-neighbourhoods must have the same spec- 
trum, i.e. G(V, E) is regularly coloured if and only if for all u, w E I/ 

C(U) CC(W) a C(Ni(U)) =C(Ni(W)) and 

If we examine the digraph in Fig. 5 we see that N,(4) = (5, 6, 71, 
Ni(4) = {2} and Ni(2) = fl etc. In fact the colouring is regular since the 
red vertices are connected to yellow, the yellow vertices receive from 
reds and connect to greens, green vertices receive from yellows and 
are connected to greens. 

The underlying graph of a digraph is the graph that results when we 
remove the direction of the arcs. Figure 6 gives the underlying graph 
of Fig. 5. 
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Fig. 6. 

Theorem 2. Any regular colouring of a digraph is also a regular 
colouring of the underlying graph. 

Proof. The result follows from noting that the neighbourhood of any 
vertex in the underlying graph is simply the union of the in-neighbour- 
hood and out-neighbourhood of the corresponding vertex in the 
digraph. 

The usefulness of this theorem becomes apparent when we note 
that it can be used in reverse. The algorithm REGE finds the maximal 
regular equivalence of a digraph, for a graph, without isolates, this is 
the trivial partition in which every vertex is equivalent. The above 
theorem means that we can take a graph, form a directed graph by 
placing directions on the edges, submit this to REGE and the result 
will be a regular equivalence for the original graph. The process of 
attributing directions to an undirected graph is call orientation. The 
technique works for any random orientation but it would obviously be 
advisable to use an orientation which is interpretable. Directions 
could, for example, be associated by orientating each edge from less 
central to more central vertices. This approach was suggested by 
Doreian (1987); although in a slightly different implementation. In 
practice the orientated digraph would probably not contain any regu- 
larly equivalent actors, and so clustering on the REGE measure of 
equivalence would be required. The above theorem merely legitimises 
this action on the grounds that when perfect equivalence does occur it 
is consistent. 
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3. Networks 

All the material in this section is a restatement of work first done by 
Doug White and Karl Reitz (White and Reitz 1983; Reitz and White 
1989). A network is a collection of graphs or digraphs with a common 
vertex set. We shall denote a network with vertex set V and edge sets 

{Ri)iei by G(V, {RJiEI) or simply G(V, {RI). A colouring of the 
vertices V or a network G(V, { Riji E ,> is a regular network colouring if 
and only if G(V, Ri) is a regular colouring for every i E 1. In other 
words, we insist that each graph taken separately has a regular 
colouring. In constructing the colour-image network we form the 
colour-image graph for each relation R, and then delete any isomor- 
phic colour-image graphs. These concepts are illustrated on the three 
relation network shown in Fig. 7. The colouring of the vertices is 
regular on each relation R,, R,, R, hence the colouring is a regular 
network colouring. The individual images R;, Ri and Rj are shown in 
Fig. 8. 

We see that I?;, R; are identical and hence the colour-image 
network consists of the two relations shown in Fig. 9. 

8----08----08 0 
G it G R G R 

R1’ 
Fig. 8. 

R3’ 
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0 
G R 

R 1,2’ 
Fig. 9. 

8 
G P 

R3q 

We can think of R;,2 as the union to the two relations R; and R;. 
It follows that we could obtain exactly the same colour-image network 
by taking the union of R,, R,, in the original network. Under the 
given colouring the relations R, and R, are equivalent in as much as 
they produce the same colour image. Given a vertex colouring of a 
network then the colour-reduced network is the network formed by 
taking the union of all relations with identical colour-image graphs. 
We denote the colour-reduced network of a network G by CR(G). 
The CR(G) of the network shown in Fig. 7 is given in Fig. 10. 

It is always true that the colour-image network of G and the 
colour-image network of CR(G) are identical A we& regular co&z- 
ing of a network G is a network regular colouring of CR(G). Every 
network regular colouring is a weak regular colouring but the converse 
is not true. Figure 11 gives a weak regular colouring for a network 
which is not a regular vertex colouring. 

The colour-image network is given in Fig. 12 and we can see that 
R; and R; are identical. It follows that the colour-reduced graph 

G G 8 

8 G3 

0” 

0 4R 

Fig. IO. 

R 
3 
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Fig. 11 

@Y 
R 

1 

given in Fig. 13 unions together the relations R, and R,. It can easily 
be seen that the colouring of the colour-reduced graph is a regular 
network colouring and hence the colouring in Fig. 11 is a weak regular 
colouring. In a weak regular colouring two vertices are equivalent (i.e. 
coloured the same) if they are connected to equivalent others on 
equivalent relations. 

It may happen that in a network with many relations there are 
many different sets of identical colour images. The colour-reduced 
network would collapse each set to a single image. A slightly stronger 
regular network colouring could be formed by only collapsing certain 
sets. In this case the resultant network colouring would be weakly 
regular on the whole network but on a subset of the relations it would 
still form a regular network colouring. 

Regular network colouring takes no account of the different bun- 
dles of relations which may exist between equivalent vertices. Take, 

5’ 

Fig. 12. 
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R1” R2 R 
3 

Fig. 13. 

for example, the network given in Fig. 7. Consider the connections 
between the green vertex 2 and the red vertices 1 and 4. The 2,l pair 
are connected by R, and R,, and the 2,4 pair by just R,. Now 
consider the connection between the other green vertex 3 and the red 
vertices 1 and 4. The 3,l pair are connected by R, only and the 3,4 
pair by R, only. It follows that the sets of relations between these 
equivalent vertices are very different. If we wish these sets or bundles 
of relations to be the same we need to strengthen our concept of 
regular network colouring. We shall use a similar trick as for the weak 
regular colouring and form a new network from our existing network. 
This time our network can contain more relations and this will make 
the definition more strict. The bundle of relations from u to w in a 
network G(I/, {R,}) is the set of relations B,,, which connect u to w, 
i.e. 

B,.,= {R~UR~W) 

Let t Mili E 1 be the set of all non-empty bundles. We can associate 
with each A4, a digraph with vertex set V and edge set defined by 
vM,w = B,,,. Strictly speaking each Mi is a set of relations, we have 
defined a new relation (which by an abuse of notation we have also 
called Mi> for each bundle. Two vertices are related by A4, if they are 
related by each relation in the bundle. Since each Mi forms a digraph 
on the same vertex set V these can be considered as a new network 
which we denote by MPX(G). If we start with a network on 3 relations 
R,, R,, R,, then MPX can contain up to 7 relations. These corre- 
spond to vertices which are connected by R, only, R, only, R, only, 
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R R 
1 2 

Fig. 14. 

R, and R, only, R, and R, only, R, and R, only and R,, R, and R, 
all together. In general if a network has n relations then MPX can 
have up to 2” - 1 relations. If two relations are identical then they will 
be merged in MPX, so it is possible for the MPX network to have less 
relations than the original network. If G is a network then a multiplex 
regular colouring of G is a colouring of G which is regular on 
MPX(G). Consider the network shown in Fig. 14. The MPX network 
with M, = R, relations only, M, = R, relations only and M, = both 
R, and R, relations is shown in Fig. 15. Also in Fig. 15 is a regular 
network colouring for the MPX graph and hence this is multiplex 
regular colouring for the network in Fig. 14. We note the following 
about the multiplex regular colouring. Firstly the colouring is a net- 
work regular colouring on the original network. We shall prove this 
general result in Theorem 3 below. We also note that there are 
network regular colourings which are not multiplex regular colourings. 
For example the partition (1, 3, 4, 61, (2, 5) induces a regular network 
colouring which is not regular on the MPX network. The network in 
Fig. 14 contains no isolates in any relation and hence the maximal 

u1 % % 
Fig. 15. 
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regular equivalence is the the trivial partition in which all vertices are 
grouped together. On the other hand the MPX graph does contain 
isolates, and in fact the regular colouring given is maximal on this 
network. Hence, the maximal multiplex regular colouring of a network 
maybe non-trivial even when the network does not contain isolates. 

Theorem 3 (White and Reitzl. Every multiplex regular colouring is a 
network regular colouring. 

Proof. Let G be a network with a multiplex regular colouring. Con- 
sider an arbitrary relation R in G. Suppose that two vertices U, w of 
G are coloured the same and that x is a vertex in the R neighbour- 
hood of U. Since U&V then there exists a relation M in MPX(G) such 
that uM.. It follows that C(x) is a colour in the M-neighbourhood of 
u and since the colouring is regular on M then there exists a vertex of 
the same colour in the M-neighbourhood of w. That is C(x) = C(y) 
and wMy; but if wMy then since MT contains the relation R in its 
bundle WRY in G. It follows that there is a vertex coloured the same 
as x in the neighbourhood of w. Since this is true for all vertices, all 
colours, and all types of neighbourhood (i.e. undirected, in-neighbour- 
hoods and out-neighbourhoods) the result follows. 

4. Hypergraphs 

The vast majority of techniques developed for social networks analysis 
is applied to data represented as graphs. As an alternative Seidman 
(19811 suggested that hypergraphs provide a suitable model for non- 
dyadic relationships. In general hypergraphs examine the situation in 
which a collection of subsets of the population has been identified. 
These subsets may be the result of some analysis on a dyadic set of 
data, or could be naturally occurring non-dyadic relationships. The 
most common non-dyadic relationships are of the actor-event type. 
We have a group of actors (the population) and a number of separate 
events; the subgroups are the groups of actors attending each event. 
An example is given by the data collected by Davis et al. (1941) which 
represents observed attendance at 14 social events by 18 woman. This 
data is given as an incidence matirix in Fig. 36. The rows correspond 
to the 18 women and the columns to the 14 events. A 1 in row i, co1 j 
means that woman i attended event j. We can think this data as an 
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Fig. 16. 

hypergraph with a population of 18 women together with 14 subsets 
which consist of the women attending each event. Alternatively, we 
can view the data as a population of 14 events with 18 subsets which 
consist of those events attended by each women. The two hypergraphs 
formed in this way are duals of each other and are alternate ways of 
viewing the same data. We should expect any generalisation of regular 
colouring to yield consistent groupings regardless of which of the two 
possible duals are taken. We now present some formal definitions. Let 
V be a set and A a collection of non-empty subsets of V. Then 
H(V, A) is a hypergruph provided every member of V is an element 
of one of the sets in A. We call the elements of I/ the vertices and the 
members of A the edges of the hypergraph. 

Since we require our regular colourings to be consistent with our 
previous definition of regular colouring we must first examine the 
situation in which the hypergraph is a graph. In this case our non-empty 
subsets of V are precisely the edges of a graph G. We require a 
consistent colouring for the dual hypergraph; unfortunately the dual 
hypergraph of a graph is not necessarily a graph (in fact it nearly 
always is a hypergraph) and so we examine, instead, the induced 
colouring on the edges of G (since these will form the vertices of the 
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Fig. 17. 

dual). Let G(V, E) be a graph or hypergraph then an edge colouring 
of G is an assignment of colours to the edges of G. If x E E is an 
edge of an edge-coloured graph then we denote the colour of x by 
C”(X). The neighbourhood N(x) of an edge (as opposed to a vertex) is 
the set of vertices it contains. Strictly speaking this notation is not 
necessary since an edge is already defined as a set of vertices. 
However, we shall need to differentiate between the set as an entity in 
its own right and the vertices which make up the set. 

Given a vertex colouring of a graph or hypergraph then the induced 
edge colouring is the colouring in which each edge is coloured by the 
set of colours in its neighbourhood. That is, for each edge X, C(X) = 
C(N(x)). The induced edge colouring for the graph in Fig. 2 is given 
in Fig. 17. 

The edge neighbourhood N”(u) of a vertex u is the set of edges 
which are incident to U. In the following theorem we characterise 
regular colouring on graphs in terms of the induced edge colouring. 

Theorem 4. Let G be a graph with vertex colouring C. If C” is the 
induced edge colouring of C then C is regular if and only if for all U, 
WEV 

C(u) = C(w) - C’(N”(U)) = C”(N”(w)). 
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Proof. Suppose C is a regular colouring and C(U) = C(w). Let a E 
N”(u), so that a = {u, x} where x E N(u). Now C”(a) = {C(U), C(x)) 
and since C(x) E C(N(u)) and C is regular there exists y E N(w) with 
C(y) = C(x). It follows that b = {w, y} E N”(w) with P(b) = 
{C(w), C(y)} = {C(U), C(x)) = C”(a) and hence Ce(Ne(u)l c 
C”(N”(w)). Similarly Ce(Ne(w)) C C”(N”(U)). 

Conversely suppose that C(U) = C(w) U,W E V hence Ce(Ne(u)) = 
C”(N”(w)). If x EN(U) then {x, U) E N”(u) so that {C(x), C(U)) E 
C”(N”(U)); it follows that there exists a y E N(w) such that 
{C(x), C(U)) = (C(y), C(w)}. If C(U) = C(w) then C(x) = C(y) and 
C(N(u)) c C(N(w)). Similarly C(N(w)) c C(N(U)) and the results 
follows. 

We can obviously consider the dual situation of being given an edge 
colouring and examining the induced vertex colouring. Let G be a 
graph or hypergraph with an edge colouring C”. Then the induced 
vertex colouring is the colouring in which each vertex is coloured by 
the set of colours in its edge neighbourhood. That is, for each vertex 
U, C(U) = Ce(Ne(u)). If we take the induced vertex colouring of the 
graph in Fig. 17 we will, of course, obtain the same type of colouring 
as in Fig. 2. The red vertices will be coloured (R, G} and the green 
vertices will be coloured {{R, G), {G}}. 

Note that the dual of Theorem 4 is false. That is, it is possible to 
have an edge colouring C” such that for all edges x, y C”(x) = C”(y) 
implies that C(N(x)) = C(N(y)) but the induced vertex colouring is 
not regular. A counter-example is given in Fig. 18; it is a simple 
matter to verify that the given colouring satisfies the condition above 
and that the induced vertex colouring corresponds to the non-regular 
partition (1, 2, 4, 5}, (3). 

Fig. 18. 
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Theorem 4 is the basis for our extension of regular colourings to 
hypergraphs. Let H(V, A) be a hypergraph with vertex colouring C 
and edge colouring C”. Then the colouring is regular if for all vertices 
U, w E I/ and all edges X, y E A. 

C(u) = C(U) * C”(N”(u)) = C”(N”(U)) (i) 

C”(X) = C”(y) * C(N(x)) = C(N(y)). (ii) 

The first condition is precisely the one contained in Theorem 4 and 
the second condition ensures that the dual hypergraph is also regu- 
larly coloured. Note that the second condition holds trivially for any 
induced edge colouring so that any regular colouring of the vertices of 
a graph will be a regular colouring when the graph is considered to be 
a hypergraph. 

The definition ensures that two vertices are coloured the same if 
they are adjacent to equivalent edges, and two edges are coloured the 
same if they connect equivalent points. 

As an example consider the Davis data of Fig. 16. We shall consider 
a woman to be socially active if she attended more than three events. 
(Note that the women corresponding to rows 8, 17 and 18 do not meet 
this condition.) The incidence matrix of the hypergraph corresponding 
to the socially active women is given in Fig. 19. 

Social Events 
1 2 3 

1 1 1 1 
2 1 1 1 
3 0 1 1 
4 1 0 1 
5 0 0 1 
6 0 0 1 
7 0 0 0 

Women 9 0 0 0 

4 5 6 7 8 9 
1 1 1 0 1 1 
0 1 1 1 1 0 
1 1 1 1 1 1 
1 1 1 1 1 0 
1 1 0 1 0 0 
0 1 1 0 1 0 
0 1 1 1 1 0 
0 1 0 1 1 1 

10 0 0 0 0 0 0 1 1 1 
11 0 0 0 0 0 0 0 1 1 
12 0 0 0 0 0 0 0 1 1 
13 0 0 0 0 0 0 1 1 1 
14 0 0 0 0 0 1 1 0 1 
15 0 0 0 0 0 0 1 1 0 
16 0 0 0 0 0 0 0 1 1 

10 11 12 13 14 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 1 0 0 
1 0 1 0 0 
1 0 1 1 1 
1 0 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 0 1 0 0 

Fig. 19. 
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Fig. 20. 

b 

The incidence matrix has been partitioned to correspond to a 
hypergraph regular colouring in which the vertices (the women) are 
divided into two groups, and the edges into three groups. Let the 
women numbered l-7 and 9 be group 1 and those numbered lo-16 
be group 2. Call events l-5 type 1, events 6-9 type 2 and events lo-14 
type 3. We can see that group 1 women go to type 1 and type 2 events 
and group 2 women go to type 2 and type 3 events. Alternatively, or 
should we say dually, type 1 events are only attended by group 1 
women, type 2 events are attended by both groups and type 3 are only 
attented by group 2 women. Note that every group 1 woman attends 
some (but not all) type 1 and some type 2 events. Alternatively every 
type 1 event is attended by at least one group 1 woman. 

Hypergraphs can also be used to represent the clique structure of a 
graph. Figure 20 gives a simple graph together with a hypergraph 
representation of its cliques. 

The cliques are a = (1, 2, 31, b = (1, 7, 4), c = (2, 5) and d = (4, 5) 
and these form the edges of the hypergraph. A regular colouring of 
the edges and vertices is given by the following pair of partitions. 

Vertices 11, 3}, (2, 4}, {S} 

Edges {a, b}, (c, d} 

We again see that two vertices are coloured the same if they are 
members of equivalent cliques, and two cliques are coloured the same 
if they include equivalent members. This technique may well provide a 
new and useful way of analysing the clique structure of a graph. 
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