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CALCULATING ROLE SIMILARITIES: AN ALGORITHM 
THAT HELPS DETERMINE THE ORBITS OF A GRAPH 

Martin G. EVERETT * 
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Steve BORGATTI ** 
University of California, Irvine 

The orbits or a graph, digraph or network provide an effective definition for role equivalence since 
they are a natural generalization of the principle of substitutability of structural equivalence. 
Calculation of the orbits is a computationally difficult task but in this paper we present a fast and 
efficient algorithm which finds the orbits of a large class of graphs. In addition, we suggest a 
simple measure of role similarity based upon the constructions contained within the algorithm. 
This makes it possible to perform a role analysis when only a limited number of automorphisms 
exist. 

1. I n t r o d u c t i o n  

Modelling techniques have recently been developed which try to cap- 
ture the notion of role equivalence. The first attempt was by Lorrain 
and White (1971), who defined structural equivalence between pairs of 
actors. Certain fundamental difficulties with this definition were pointed 
out by Sailer (1978) and White and Reitz (1983). In essence, their 
criticism was based on the fact that actors playing the same role do so 
by exhibiting similar relational patterns to dif ferent  actors playing 
equivalent roles. In Lorrain and White's definition, actors playing the 
same role have the same relationship to the s a m e  actors. 

The critics propose alternative definitions which unfortunately lose 
the important principle of substitutability. Structural equivalence as 
presented by Lorrain and White is based upon the fact that two 
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structurally equivalent actors can be substituted for each other without 
changing the structure of the social network. A different way of viewing 
this concept is as follows: consider a social network in which each actor 
except two is labelled. If there is no way to distinguish between these 
two nodes then they are structurally equivalent. Everett (1985) propo- 
ses a natural generalization of this concept which simultaneously 
retains the basic principle of substitutability and answers the criticism 
of Sailer, and White and Reitz. If we examine the alternate way of 
viewing structural equivalence described above then it is the labelling 
process which restricts structural equivalence. By labelling all but two 
vertices we immediately have a technique for identifying otherwise 
indistinguishable vertices. The labelled vertices mean that structural 
equivalence can only be applied to vertices which connect to the same 
vertices in the same way. If we remove all labels and group together 
indistinguishable vertices then we obtain a natural generalization of 
structural equivalence in which the principle of substitution is retained 
and which simultaneously answers the criticisms of Sailer (1978) and 
White and Reitz (1983). 

To illustrate the above, consider the simple network shown in Figure 
1. The vertices 1 and 2 are structurally equivalent since if we remove 
the labels from these nodes then we would not know which was which. 
Alternatively, if we interchange the labels of 1 and 2 the new graph 
would be isomorphic to the graph of Figure 1. The same is true of the 
vertices 3 and 4; however, we note that 2 and 3 are not structurally 
equivalent since if we remove these two labels then we can easily 
replace them by noting that 2 is adjacent to 5, and 3 is adjacent to 6. 
This time if we interchange the labels 2 and 3, the resultant graph is not  
isomorphic to the graph in Figure 1. Similarly, vertices 5 and 6 are not  
structurally equivalent. 

If we start from an unlabelled version of the graph in Figure 1 then 
there is no way to distinguish between the vertices within the sets 

$ 6 

1 2 3 4 

Fig.  1. 
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{1, 2, 3, 4} and {5, 6}. For example, if we wish to assign label 5 to the 
unlabelled graph, then we would have two possibilities, namely either 
of the two degree-3 vertices. There is, however, no way of knowing 
which of these is 5 without additional information - such as the 
labelling of another vertex. In Lorrain and White's version, this infor- 
mation is provided and so 5 and 6 fail to be structurally equivalent. 

The sets {1, 2, 3, 4} and (5, 6} are known as the orbits of the graph 
and Everett (1985) argues that these are the sets of role-equivalence 
actors. Winship and Mandel (1983) also use orbits as the mathematical 
basis of role similarity but they quickly discard the concept in favor of 
their own role equivalence. They do refer to further work on orbits but 
unfortunately this work has never been published. Following the 
terminology of Winship and Mandel we shall say that two vertices in 
the same orbit are automorphically equivalent. 

It should be noted that in the above example the degrees of the 
vertices were sufficient to find the orbits. In general any property of the 
graph may be used to distinguish vertices or sets of vertices in an 
attempt to establish the orbits. Since there are no known complete sets 
of graphical invariants, it is not possible to find the orbits by examin- 
ing a particular set of properties. Consequently the only algorithm 
which can find orbits must be based on a direct search technique and 
since this search must be based on permutations it will soon become 
computationally infeasible even for small graphs. Everett (1985) sug- 
gests that finding the orbits is a relatively easy task once the adjacency 
matrix of the graph has been reduced to Jordan canonical form. 
Unfortunately, this is not the case and the reduction technique merely 
complicates rather than simplifies any direct search technique. In this 
paper we shall describe an algorithm which finds orbits efficiently for a 
large class of graphs. In addition, we extend the basic algorithm to give 
a simple measure of the degree of role equivalence. 

2. Mathematical definitions 

For the sake of simplicity we shall initially consider only graphs, 
leaving the extension to digraphs and networks for a later section. 

Let G(V, E) be a graph with vertex set V and edge set E. An 
automorphism of G is a permutation ~r of V with the property that 
(a, b ) ~ E  if and only if (Tr(a), ~ r (b) )~E.  Two vertices a, b ~ V  
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belong to the same orbit of G if and only if there exists an automor-  
phism rr such that r t ( a ) = b .  Belonging to the same orbit is an 
equivalence relation and hence the vertices of G are parti t ioned into 
distinct equivalence classes. 

If S is a subset of V then the neighborhood N(S) is defined by 

N(S)=SO{v~  V -  S: (v, s ) e E ,  s ~ S } .  

We define the higher-order neighborhoods inductively 

Ni+a(S)=N(Ni(S)). 

Consider the graph in Figure 1. If S = { 1} then 

N ( S )  = {1, 5) 

N 2 ( S )  = (1, 2, 5, 6} 

N3(S )  = {1, 2, 3, 4, 5, 6}. 

If x ~ V then we define the point-deleted neighborhood Ni(x) as Ni(x) 
- { x }. The degree vector of a graph G is defined by 

d(G)=(d(Vl), d(v2),...,d(v,) ) for v ~  V(G) 

where d(vi) is the degree of the vertex vi, 

n=lVl ,  

d(ui) <~d(Vi+l) , for i =  1 . . . .  , n -  1. 

If S is a subset of V then ( S )  is the induced subgraph, i.e. the 
maximal subgraph of G with vertex set S. We shall write d(S) for 
d((S)). Hence, in our example, 

= ( 0 )  

d(N2(S))=(1,1,2).  

The problem of deciding whether two graphs are isomorphic has been 
the subject of much research. So far no polynomial time algorithm has 
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been discovered for solving this problem. In fact, it is not even known 
whether this problem is NP-complete or not (though it is clearly NP) 
and hence the subject has received particular attention in recent years. 
Fontet (1975) proved that finding the orbits solves the graph isomor- 
phism problem. It therefore seems highly unlikely that a polynomial- 
time algorithm exists for this problem. For certain classes of graphs 
polynomial time algorithms for finding orbits do exist, for example 
trees (Fontet 1976), interval graphs, planar graphs, and outer-planar 
graphs (Colbourn and Booth 1981). (In fact, linear-time algorithms 
exist for all these classes.) 

3. The algorithm 

The orbits of a graph are a set of vertices that are indistinguishable 
except for labelling. Hence if any two vertices can be differentiated by 
any property then they must be in different orbits. Unfortunately, there 
is not a set of properties which completely describes a graph. Conse- 
quently it is not possible to find the orbits by investigating a collection 
of attributes of each vertex. However, any property not shared by two 
vertices guarantees that they are in separate orbits. The algorithm 
presented here is based on this fact so that the actual orbits can only be 
a finer partition than that produced by the algorithm. 

To illustrate the technique we start with a simple example. Consider 
the graph in Figure 1. Partition the vertex set so that we group together 
vertices of the same degree. We obtain the sets (1, 2, 3, 4} and {5, 6}. 
As it happens, these are the orbits, so that the degrees of the vertices 
were sufficient to characterize the orbits in this case. Unfortunately, it 
will not usually be that simple. Now let us examine the graph P5 as 
shown in Figure 2. 
The orbits are {1, 5), {2, 4} and {3}. If we split the vertex set with 
respect to degree only we obtain the split {1, 5} and {2, 3, 4}. However 

0 0 0 0 0 
1 2 3 4 5 

Fig. 2. 
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when we examine d(~r(x)) for all x ~ (2, 3, 4} we obtain the follow- 
ing: 

x d(x) ~2(x) d(~?2(x)) 

2 (1, 3} (1, 3,4} (0, 1, 1) 
3 (2, 4} {1, 2, 4, 5} (1, 1, 1, 1) 
4 (3, 5} {2, 3, 5} (0, 1, 1) 

Since d(A72(2)) = d(N2(4)) but 4: d(/V2(3)) we can distinguish 3 from 2 
and 4. Quite simply we are noting that 2 and 4 are directly adjacent to 
vertices of degrees 1 and 2 whereas 3 is adjacent to two vertices of 
degree 2. 

In any graph we can continue to look at higher-order neighborhoods, 
so that x and y belong to the same set only if 

d ( i V i ( x ) ) = d ( N i ( y ) )  f o r i > _ 0 .  

Note that the above technique combines structure with degree; the 
length and content  of the degree vectors contain information not only 
about the degrees of the vertices but  also about the basic construction 
of the graph. Consequently, this method can work even if the graph is 
regular. 

Consider the cubic graph (every vertex has degree 3) shown in Figure 
3. The construction of d(/V2(x)) for each vertex is as follows: 

x ~(x) d(~(x)) 
1 2 ,3 ,4  (1,1,2) 
2 1 ,3 ,5  (0,1,1) 
3 1 ,2 ,4  (1,1,2) 
4 1 ,3 ,5  (0, 1, 1) 
5 2, 4, 6 (0, 0, 0) 
6 5 ,7 ,9  (0, 0, 0) 
7 6, 8, 10 (0, 1, 1) 
8 7, 9, 10 (1, 1, 2) 
9 6, 8, 10 (0, 1, 1) 

10 7, 8, 9 (1, 1, 2) 

I 2 "7 8 

3 4 9 10 

Fig. 3. 
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The techniques above are successful for most graphs but it is still 
possible but quite difficult to find examples on which these methods 
fail. Consider, for example, the graph given by the adjacency matrix in 
Figure 4. The graph is regular of degree 10 and has diameter 2. Hence 
for each x, N(x) consists of 10 vertices and 572(x) will consist of the 
whole  g raph  m i n u s  x. It tu rns  ou t  tha t  d(A71(x))  = 
(3, 3, 3, 3, 3, 3, 3, 3, 3, 3) for all x, and since the graph is regular it 
follows that 

d(N'(x))=d(Ni(y))  f o r a l l x ,  y ¢  V a n d i > 0 .  

However, it is the case that the graph has to orbits, {1..13} and 
{ 14..26}. A refinement of the above technique can be incorporated into 
the algorithm to detect the orbits of the graph in Figure 4. Based upon 
one example any number of properties of the vertices could be used to 
distinguish between sets of similar vertices. After considering several 
alternatives we have decided upon using betweenness centrality (Free- 
man 1979) to refine the algorithm. There are several reasons for this 
choice; firstly betweenness has an easy sociological interpretation and 
most social scientists see it as a valid reason for distinguishing between 
individuals. Secondly, it captures "a  lot of the structure" - -  in essence 
graphs in which everybody has the same betweenness measure have a 
high degree of combinatorial regularity which usually (but not always) 
means that the vertices are all automorphically equivalent. Finally it is 
straightforward to compute and hence easy to incorporate into the 
algorithm. 

In a similar manner to the degree vector of Section 2 we define the 
betweenness vector CB(G ) as follows: 

CB(G)=(CB(Vl), CB(v2) . . . .  ,CB(vn)) f o r v , ~  v(a) 

where 

CB(Vi)<C,(vi+,), for i=l. .n--1.  

In the graph of Figure 4 

CB(NI(1)) = ( 3 , 3 ,  3, 3, 4, 4, 4, 5, 5, 5) 

whereas 

CB(Na(26)) = (3, 3, 3, 4, 4, 4, 4, 4, 4, 6). 
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The betweenness vector can be used to separate the vertex set into two 
subsets, namely (1..13} and {14..26}. As noted above, these correspond 
to the orbits of the graph. 

The combination of the above concepts gives the criteria for parti- 
tioning in the algorithm. 

In summary, two vertices, x, y ~ V belong to the same set provided 

(i) d(N' (x ) )=d(N' (y ) ) ,  

(ii) CB(N'(x))=C~(N~(y)), 

i = 1 . . n - 1  

i = 1 . . n - 1 .  

In other words, two vertices belong to the same set if their neighbor- 
hoods are similar with respect to the degrees and centralities of their 
respective elements. 

4. Non-equivalence 

The methods described above are intended only to detect the equiv- 
alence or non-equivalence of a pair of points; they do not attempt to 
measure the extent of equivalence. However, simple measurements 
along these lines may be devised. One such approach is given here. 

First define a function SIM(i, x, y) that compares the degree and 
betweenness vectors of actors x and y for each neighborhood level i. If 
identical the function returns 1; otherwise 0.Technically, 

SIM(i, x, y )={10  

if d(Iq'(x))=d(]Vi(y)) 

and CB(]Vi(x)) = C.(N'(y))  
otherwise. 

We define the extent of equivalence between actors x and y, A(x, y), 
as the proportion of identical neighborhoods, weighted inversely by the 
remoteness of the neighborhood. Specifically, 

A(x, y ) =  
~-~.SIM(i, x, y) / i  

Z 1 / i  

where the summations are over i = 1..n - 1. Thus, if a pair of actors 
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differs in their immediate neighborhoods (i = 1), they will be assigned 
an equivalence score close to zero. On the other hand, if they differ 
only in the ( n -  1)th neighborhood, they will be assigned an equiv- 
alence score close to one. Only if they are identical on all neighbor- 
hoods will they receive a perfect score of 1.0. 

Finer measures may be obtained by modifying the SIM function to 
return a range of values between 0 and 1 reflecting the extent of 
similarity between actors' degree and centrality vectors. In our current  
implementation (Borgatti 1987), we compute the similarity between a 
pair of degree vectors as the proportion of identical elements. Likewise, 
the similarity between centrality vectors is the proport ion of values in 
common. If two attribute vectors are of different length, the max imum 
similarity between them is the length of the shorter one divided by the 
length of the longer one. 

To accommodate  the computat ion of extents of  equivalence, we can 
write the algorithm as follows: 

Initialize equivalence matrix A(x, y)  = 0 for all x, y. 
For  each neighborhood level i = 1..n - 1 do: 
for each actor x = 1 to n do: 

step 1: generate neighborhood 2Vi(x) 
step 2: record degree vector d(~ri(x)) 
step 3: compute centrality vector CB(N~(x)) 

for each pair of actors x = 2 to n and y = 1 to x - 1 do: 
A(x, y)=A(x, y)+ SIM(x, y)/i. 
Normalize A(x, y)=A(x, y)/E(1/i). 

One additional refinement should be mentioned. Betweenness 
centrality is obtained by summing the columns of the dependency 
matrix (Freeman (1979), just  as closeness centrality is obtained by 
summing the rows of the geodesic distance matrix. In the summation,  
both measures lose information. For our purposes it is desirable that 
this does not  occur. One way to prevent the loss is not compute  the 
sums, but rather compare the entire column (or row) of values directly. 
This means that our centrality vector CB(Ni(x)) is no longer a vector 
of numbers, but a vector of vectors (i.e. a matrix). This modification 
poses no serious difficulty, except that the computer  implementat ion 
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runs more slowly. Consequently, in our computer program we allow the 
user four options for computing centrality. These are: 

Method Description Computation speed 

CLOSENESS standard closeness very quick 
CLOSENESS/V vector of vectors quick 
BETWEENNESS standard of betweenness slow 
BETWEENNESS/V  vector of  vectors even slower 

Applying the CLOSENESS method to the graph in Figure 3, we obtain 
the following results: 

1 2 3 4 5 6 7 8 9 10 

1 1.00 0.24 1.00 0.24 0.12 0.12 0.24 1.00 0.24 1.00 
2 0.24 1.00 0.24 1.00 0.32 0.32 1.00 0.24 1.00 0.24 
3 1.00 0.24 1.00 0,24 0.12 0.12 0.24 1.00 0.24 1.00 
4 0.24 1.00 0.24 1,00 0.32 0.32 1.00 0.24 1.00 0.24 
5 0.12 0.32 0.12 0.32 1.00 1.00 0.32 0.12 0.32 0.12 
6 0.12 0.32 0.12 0.32 1.00 1.00 0.32 0.12 0.32 0.12 
7 0.24 1.00 0.24 1.00 0.32 0.32 1.00 0.24 1.00 0.24 
8 1.00 0.24 1.00 0.24 0.12 0.12 0.24 1.00 0.24 1.00 
9 0.24 1.00 0.24 1.00 0.32 0.32 1.00 0.24 1.00 0.24 

10 1.00 0.24 1.00 0.24 0.12 0.12 0.24 1.00 0.24 1.00 

Two points about the equivalence matrix should be noted. First, we can 
confirm the fact that clustering together maximally equivalence points 
(A(x, y) = 1.0) correctly yields the orbits, which are: 

A = ( 1 2 8 1 0 }  

B = { 2 4 7 9 }  

C=(56). 

Second, the degree of equivalence between members of different 
equivalence classes corresponds to what we would intuitively expect. 
To see it is helpful to collapse the equivalence matrix according to the 
orbits, giving: 

A B C 

A 1.00 0.24 0.12 
B 1.00 0.32 
C 1.00 
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0 0 
$ 6 

The lowest role-similarity occurs between members of A (the least 
central points) and members of C (the most central points). The 
highest similarity occurs between B and C, corresponding to the fact 
that the centralities of B 's  members are closer to those of C 's  members 
than to those of A's members. 
As a further example, consider the graph in Figure 5, which has six 
points in six orbits. The equivalence matrix A(x, y) is 

1 2 3 4 5 6 

1 1.00 0.23 0.11 0.21 0.43 0.69 
2 0.23 1.00 0.30 0.64 0.42 0.23 
3 0.11 0.30 1.00 0.29 0.14 0.13 
4 0.21 0.64 0.29 1.00 0.21 0.30 
5 0.43 0.42 0.14 0.21 1.00 0.31 
6 0.69 0.23 0.13 0.30 0.31 1.00 

Note that the algorithm correctly identifies each pair of points as 
non-equivalent. Furthermore, the two most similar pairs are (1, 6) and 
(2, 4), as one would expect. The least similar pairs are (1, 3), (5, 3) and 
(6, 3), which all involve point 3, also as expected. 

5. Directed graphs and networks 

Both the discrete and valued forms of the algorithm may also be 
extended to digraphs. The definition of orbit is the same as in Section 
2. We can define both indegree- and outdegree-neighborhoods as 
follows: 

N i n ( S )  = S U { u ~  V - S :  (v ,  s ) ~ E ,  s E  S )  

Nout(S)=SU{v~ V -S :  (s, v)~E,  s~S} .  



M. G. Everett and S. Borgatti / Calculating role similarities 89 

The higher-order neighborhoods, as well as point-deleted neighbor- 
hoods, follow as before. Similarly, we define the indegree v e c t o r  din as 

d i n ( G ) = ( d i n ( V l ) ,  d in(V2) , . . . ,d in(On)) ,  v i e  V 

where din (vi) is the indegree of vertex u i. The outdegree vector, as well 
as incentrality and outcentrality vectors, are defined similarly. The 
algorithm then checks if 
1. din( ]Vi/n(x)) : din(/Vi/n(y)) 
2. ~i = d i ~ ( N ~ t ( y ) )  din(N~ut(X)) ~i 

3. dout(N~n(X)) = dout(N.~(y)) 
4. dout(N,~ut(X)) = dout (N~ut (Y) ) .  

l l 5. CB(Nin(X)) = CB(Nin(Y))  
6. CB(N~ut(X)) = CB(]Vout (y))  
and x and y are in the same subset if all six conditions are true for all 
neighborhoods. 

Extending orbits to networks is simply a matter  of insisting that the 
conditions above hold for each relation. Consequently it is straightfor- 
ward to extend all the work above to networks. For the extent of 
equivalence algorithm we simply make the comparisons between degree 
and centrality vectors for each relation for each neighborhood. An 
overall measure of similarity can then easily be constructed. 

6. Conclusion and discussion 

The algorithm described above is an aid to finding the orbits of a 
graph. It should be emphasized that the orbits can only be finer 
partitions than those found by the algorithm, so that once two vertices 
have been separated we can guarantee that they are in separate orbits. 
The converse is not true; two non-separated vertices may still be in 
different orbits. A user analyzing social networks should at least take 
comfort  from the fact that it is a hard task to defeat the algorithm. 
Sophisticated mathematical techniques are required to construct exam- 
ples of graphs on which the algorithm fails. The chances of this 
occurring in real data - -  including data in which regularity is imposed 
upon it (e. g. kinship systems, organizational structures) - -  is so remote 
that it should be discounted. It is however worth noting that the 
procedure can fail in two distinct ways. Basically, the program ex- 
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amines all the neighborhoods of the vertices and concludes that vertices 
which have every neighborhood isomorphic are in the same orbit. 
Unfortunately it is computationally infeasible to test for isomorphism 
and so we simply examine a set of attributes of each neighborhood. 
Failure can occur if two non-isomorphic neighborhoods produce the 
same attribute measurements. A second and more dramatic failure is if 
two non-automorphic vertices have all their neighborhoods isomorphic. 
An example of a graph in this second category is the (3, 12) cage. l This 
graph has 126 vertices and two orbits; it is also regular of degree 3 and 
its smallest cycle is of length 12. A consequence of these facts is that 
every neighborhood (except when it is the whole graph) is a tree and 
since the graph is regular these must be isomorphic. The detailed 
construction of this graph is fairly complicated and the interested 
reader is referred to Biggs (1974: 164). The only major consequence of 
these possible failures is to the user genuinely looking for orbits. Since 
we have not characterized the graphs on which failure can occur then in 
this case the output  of the algorithm can only be used to eliminate 
certain branches of a direct search. 

On the other hand, the authors believe that the algorithms described 
above will be extremely useful to anyone interested in analyzing role 
equivalences in social networks. 
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