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The principal goal of studying experimental exchange networks is to understand the relationship 

between power and network position. In this paper we provide a formal definition of the 

appropriate notion of position, and explore some of the consequences of assuming that power is 
a function of position. It is shown that, in highly structured graphs, the space of possible power 

outcomes is significantly reduced if power is entirely structural. Drawing on the notion of role 

colorings (Everett and Borgatti 19911, we formalize the frequently expressed intuitive idea that a 

node’s power is a function of the powers of its neighbors, just as their power is determined by 

the powers of their neighbors, and so on. We use a combination of two role colorings to express 

this idea. One, called ecological coloring, states that if two nodes have the same power 

neighborhoods (i.e. distinct levels of power exhibited by their neighbors), then they must have 

equal power. The other, called regular coloring, states that if two nodes have equal power, then 

we can infer that they have the same power neighborhoods. Together, these colorings imply a 
one-to-one relationship between the power of a node, and the power(s) of its neighbors. It is 

found that applying these colorings in addition to assuming power is a function of position, 

radically reduces the sample space of possible power outcomes, leaving only a few possibilities. 

With two revealing exceptions, the reduced space of possible power outcomes always contains 

the experimentally observed result. 

In recent years, there has been considerable research investigating the 
structural determinants of power in experimental exchange networks 
(Wilier and Anderson 1981, Cook et al. 1983; Bonacich 1987; Mars- 
den 1987; Stolte 1988, Markovsky et al. 1988). The basic premise of 
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this work is that social actors (in and out of the laboratory) are 
embedded in a network of exchange opportunities (i.e. potential 
trading partners), and their position in this network determines, in 
part, their ability to make exchanges with others at rates favorable to 
themselves. An actor’s power is seen as a potential inherent in the 
actor’s position that he can, if sufficiently motivated and competent, 
use in a well-defined exchanged situation to yield favorable outcomes. 
Theories accounting for power try to understand what it is about an 
actor’s position that confers or precludes power given a specific 
environment of exchange rules. 

In the context of laboratory experiments, these rules include such 
things as the number of exchanges each node is permitted per round, 
and whether the benefits of an exchange are conditional upon other 
exchanges (see the discussion on inclusive, exclusive and null connec- 
tions in Willer’s introduction of this issue). In this paper, we consider 
only experiments in which all nodes are allowed one exchange per 
round, and connections are not inclusive. However, our procedures 
apply without modification to experiments with multiple exchanges 
per round provided each node is allowed the same number of ex- 
changes. In addition, we have satisfied ourselves that generalization to 
varying number of exchanges is possible, but is outside the scope of 
this paper. 

1. Indices of power 

One form that theories of power have taken is the development of 
nodal measures of potential power or structural strength based on 
graph-theoretic considerations (Cook et al. 1983; Bonacich 1987; 
Markovsky et al. 1988). Implicit in these efforts is the idea that each 
node in an exchange opportunity network can be assigned a score 
representing the strength or potential value of that location with 
respect to helping the actor who occupies it to exploit his or her 
neighbors. This strength is the result of an interaction between a 
specific set of rules of exchange (e.g. all actors are allowed one 
exchange per round), and one or more graph-theoretic properties of 
each location (node) in the exchange opportunity graph, such as 
number of alters directly tied to, proximity to nodes with few alters, 
etc. Thus, in an experimental setting where individual differences in 
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competence and motivation can be controlled, once a set of rules of 
exchange is chosen, power relationships that emerge among actors are 
expected to be entirely determined by differences in strength of their 
locations in the experimental network ‘. We formalize these ideas in 
terms of two axioms, both of which assume an exchange opportunity 
network with a specified set of rules: 

Axiom 1. Let G(V, E) be an exchange opportunity network. The 
strength S(U) of a node u is a graph-theoretic attribute that can be 
measured on an ordinal (or higher) scale. 

The term ‘graph-theoretic’ is used to indicate an attribute whose 
values are calculated from the graph itself (rather than exogenous 
factors such as intelligence or interest level of the actors). Examples of 
graph-theoretic attributes are degree, centrality, number of cliques 
belonged to, etc. The term ‘ordinal scale’ is used to indicate that 
strength can be expressed as numeric quantity whose value can be 
used to evaluate which of a pair of nodes has more of the attribute. 

Axiom 2. Let G(V, E) be an exchange opportunity network. Let P be 
the power relation where aPb indicates a has power over b. Let S be 
defined as in Axiom 1. Then V’a, b E V, aPb ( = = ) S(a) > S(b) 
provided (a, b) E E. 

According to Axiom 2, the power of an actor over another in an 
exchange network with a given set of rules or background conditions is 
wholly determined by the difference in the strength of their locations 
in the network. The proviso that a and b be connected is an opera- 
tional requirement and not a mathematical one: since power use is 
defined in terms of rates of exchange, and unconnected nodes cannot 
exchange, power is undefined for unconnected nodes. One could 
further argue that if power is a favorable exchange rate, then power is 
also undefined for pairs of connected nodes that choose never to 
exchange. This issue is taken up again in the last section. 

’ In some experiments, however, subjects are rotated through nodes in a fractional factorial 

design that requires statistical control of subject effects after the data are collected. Other 
experiments re-use subjects in such a way that individual effects cannot be removed even 

statistically. 
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In adopting these axioms, researchers assume that, contrary to 
Emerson’s (1962) claim, power is not, in a strict sense, truly relation. 
By ‘relational’, we mean any property, attribute or variable which 
describes a pair of nodes and which cannot be reduced to an attribute 
(or set of attributes) of each node individually. An example is given by 
a typical experimental exchange opportunity network, where links 
between nodes exist according to the whim of the researcher, and are 
not a result of any attribute of the nodes (such as propensity to 
exchange). The notion of testing for reducibility is analogous to testing 
for independence in a contingency table: if the probability of an 
observation falling in any cell (i, j) of the table can be computed from 
the probability of falling in row i and the probability of falling in 
column j, then we consider that there is no relationship between the 
variables. Similarly, if the power of one node over another is reducible 
to a comparison of their independent strengths, then power is no 
more relational than age (‘is older than’), income (‘makes more money 
than’), or any other attribute of the individual. This monadic assump- 
tion makes it not only convenient but technically correct to refer to a 
given node as having ‘high power’ or ‘low power’, or having ‘more 
power than node X’ rather than ‘having power over x’, as would be 
required if power were strictly relational. 

It should be noted that there is nothing wrong with explaining 
power in terms of nodal attributes: if empirically justifiable, it is 
certainly parsimonious. The axioms do not imply that power is some- 
how non-structural nor that relations among all nodes in the network 
need not be consulted in developing a measure of power. The axioms 
do, however, imply that power is transitive (again contrary to Emer- 
son’s 1962:31 claim). That is, if a has power over b, and b has power 
over c, then, provided a and c are able and willing to exchange, it is 
inevitable that a has power over c. For clarity, we state this as a 
theorem: 

~~~er~~~~~~~ 1. Let P be a power relation on an exchange opportunity 
network G(V, E). Then Vda, b, c E V, aPb and bPc imply UPC, 
provided (a, c) E E. 

Proof. By the axioms, aPb and bPc imply S(a) > S(b) and S(b) > S(c), 
and since S is ordinal it follows that S(a) > S(c) and therefore aPc. 
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Thus, conceiving of power in terms of relative structural strength 
has certain implications, such as transitivity, that are potentially dis- 
confirmable. Unfortunately, none of the networks that have so far 
been used experimentally happen to have any triples that could be 
tested for transitivi~ 2. 

2. Structural similarity 

Another implication of the axioms is the fact that any pair of nodes 
which are structurally isomorphic must be equally strong and there- 
fore equally powerful. By structurally isomorphic we mean that they 
have the exact same pattern of direct and indirect ties with others. For 
example, if a node a is connected to three others, one of which is 
connected to no other, then any node isomorphic to a must also be 
connected to exactly three others, one of which is connected to no 
other. Structurally isomorphic nodes are absolutely indistinguishable 
except by name. One way to identify sets of isomorphic nodes in a 
graph is to redraw the graph without node labels. Any nodes that can 
be distinguished from any other in this graph (on any ground, includ- 
ing centrality, number of alters at distance 2, etc.) are not st~cturally 
isomorphic. If no graph-theoretic attribute distinguishes them, then 
they are structural isomorphic. A technical definition is as follows: 

~e~~~~~~~ 1. Let G(V, E) be a graph with node-set V and edge-set E. 
Two nodes a, b E V are said to be st~ct~r~~~~ i~o~5r~~~c if there 
exists an automorphism 7r such that r(a) = b. An automorphism is a 
permutation of nodes such that for all u, u E V, (u, u) E E iff 
T&), r(u) E E. 

To illustrate the concept, consider the graph in Fig. l(a). The set of 
all automorphisms of the graph is given in Table 1. As can readily be 
seen, the non-trivial automorphisms correspond to the vertical and 
horizontal symmetries of the graph, together with their composition. 
The maximal sets of nodes that are mapped to each other by any 
automorphism are {{a, c, h, j}, {b, d, g, i}, {e, f}). These exhaustive, 

’ Research has been conducted almost exclusively on trees, which contain no triples in which all 
members are connected, as the theorem requires. 
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Fig. 1. Exchange opportunity networks. 
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Table 1 

Automorphisms of the graph in Fig. 1 

Node TI =2 r3 574 

g 
h 

h 

g 

mutually exclusive sets (called orbits) identify nodes that are struc- 
turally indistinguishable. Orbits and related constructions have been 
proposed (Everett 1985) as network formalizations of the sociological 
notion of position. For a fuller discussion of this notion of position, 
see Borgatti and Everett (1992). 

It should be noted that the definition assumes that all nodes are 
allowed the same number of exchanges per round. To generalize the 
definition to variable numbers of exchanges, one has only to realize 
that two nodes allowed different number of exchanges cannot be 
isomorphic. In other words, the number of permissible exchanges acts 
like an indelible stain that disallows any automorphism that does not 
match colors. Thus, we can modify the definition as follows to allow 
variable exchanges: 

Definition lb. Let GW, E, X1 be a graph with node-set V, edge-set E 
and nodal attribute X such that X(u) gives the number of exchanges 
per round that node u is allowed. Two nodes, a, b E V are said to be 
structurally isomorphic if there exists an automorphism n such that 
da) = b. An automorphism is a permutation of nodes such that for 
all U, c’ E V, (u, ~1) E E iff (r(u), T(U)) E E and QT(Y> = n(w) + X(y) 
= X(w). 

Given the axioms relating power to structural strength, it is evident 
that two nodes that occupy the same position must have equal 
strength and, if adjacent, equal power 3. Furthermore, their power 

3 Readers may prefer to add the qualifer ‘if they exchange’. 
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relationships vis-a-vis their respective neighbors must correspond to 
each other in a one-to-one fashion. Finally, the power each has over a 
common alter (or a structurally isomorphic alter) must be the same. 
These are all consequences of the following basic theorem: 

Theorem 1. Let S(U) be the strength of a node in an exchange network 
G(V, E) with a given set of rules. Let O(U) denote the orbit or 
position of node U. Then O(a) = O(b) + S(a) = S(b). 

Proof. By definition, if two nodes are automorphically equivalent, they 
are identical with respect to all graph-theoretic attributes, including 
strength. 

Theorem 1 simply states that structurally identical nodes must have 
equal strength. Note that it does not follow that nodes of equal 
strength are isomorphic, nor (equivalently) that nodes that occupy 
structurally distinct positions must have different strengths. The fol- 
lowing corollaries are evident, given our axioms: 

Corolluvy 2-1. If O(a) = O(b) then (a, b) P P and (b, a) p P. 

Corollary 2-2. If O(a) = O(b) and aPc, then 3d such that bPd and 
O(c) = O(d). 

Corollary 2-l merely states that structurally isomorphic nodes have 
no power over each other. Corollary 2-2 states that structurally iso- 
morphic nodes have isomorphic ‘power neighborhoods’ such that any 
alter that one ego dominates has a counterpart in the other ego’s 
neighborhood which is equally dominated. 

3. Power partitions 

Now let us consider the space of all possible realizations of the 
dependent variable in an exchange experiment, which is power use. As 
commonly measured, the dependent variable is a ratio-scaled variable 
which records, for each pair of adjacent nodes, the long-run rate of 
exchange negotiated by the pair. The independent variable, structural 
strength, is also typically constructed using procedures that arguably 
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yield ratio-scaled measurements. Until very recently, however, re- 
searchers have been quite modest in their use of these measurements, 
having chosen to utilize only the ordinal qualities of their measures. 
For example, to test their GPI measure against experimental results, 
Markovsky et al. check only whether nodes with higher GPI scores 
have better-than-even exchange rates with those they exchange with. 

In this paper, we shall be even more modest. We shall not attempt 
to determine which of a pair of adjacent nodes will dominate. Rather, 
we shall concern ourselves only with determining whether either node 
will dominate, or whether they will trade as equals. In effect, we will 
ignore even the ordinal qualities of our measurements and make use 
only of the nominal. 

Given that we are only interested in nominal properties, each 
realization of the dependent variable reduces to a binary relation 
which indicates, for each pair of adjacent nodes, whether they trade 
on equal terms. This relation is reflexive, symmetric and, in principle, 
transitive. It is therefore an equivalence relation which partitions 
nodes such that nodes placed in the same class have equal power 
while nodes placed in different classes have unequal power. In prac- 
tice, of course, one must recognize that certain power relationships 
implied by the partition, namely those between non-adjacent nodes, 
can never be observed and are therefore best left uninterpreted. 

An upper bound on the number of possible realizations of nominal 
power outcomes is therefore the number of partitions of II nodes. 
However, for many networks this is not a least upper bound since, for 
any graph with non-trivial automorphisms, Theorem 1 implies that 
some partitions are impossible. According to the theorem, isomorphic 
nodes must always be placed in the same power class. Hence any 
partition that splits isomorphic nodes into separate classes cannot be a 
power partition. It is well known that the set of all partitions of n 
objects forms a lattice. Theorem 1 says that the set of power partitions 
forms a subset of that lattice, with the partition of nodes into orbits as 
its base. This means that a power partition can differ from the orbit 
partition, but only by collapsing some of the orbits into broader 
classes. 

Thus, one effect of Theorem 1 and its corollaries is to refine the 
sample space of possible power outcomes to a potentially much 
smaller set. An example is the three-node line shown in Fig. l(b). The 
lattice of all partitions of three nodes (five in all) is shown in Fig. lc. 
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According to Theorem 1, only two of these partitions (shown in Fig. 
l(d)) are possible power outcomes. As can be seen, for graphs with a 
great deal of ‘structure’ (i.e. relatively many nodes occupying the same 
position), Theorem 1 provides a considerable reduction in the number 
of partitions that need to be considered. For a five node line, the 
theorem yields five possible outcomes out of 52 partitions. For a 
seven-node star (Fig. le), the theorem yields only two partitions out of 
877, 

Experimental support for Theorem 1 is provided by the network in 
Fig. 2(d), which was tested by Markovsky et at. Of the 877 possible 
partitions, only five are allowed by Theorem 1 (see Table 2). Included 
in the five is ({a, e, f, g}, lb, c, d}}, which is the partition empirically 
observed when all nodes are allowed one exchange per round. As the 
reader can verify, the results of all experimentally tested exchange 
networks reported in the literature to date are consistent with Theo- 
rem 1. 

Theorem 1 may be used a a first check for proposed measures of 
potential power, since any measure of positiod strength that does 
not assign the same values to isomorphic nodes is obviously incorrect. 

It is interesting to note that the theorem applies to any structural 
variable, not just power. This means that for many graphs (those is 
which there are fewer distinct positions than nodes), there are a 
limited number of possible partitions that constitute the outcome 
space for any infinity of conceivable structural variables. For such 
graphs, we can expect high nominal associations among all structural 
attributes, including betweenness, power, eccentricity, expansiveness, 
closeness, etc. In general, the fewer the number of distinct positions, 
the higher the expected associations among all structural variables, 
thus changing the usual baseline. In this sense, associations among 
structural variables are a function of the ‘amount of structure’ in the 

Table 2 
Permissihie power partitions for the graph in Fig. 2(d), given Theorem 1 

1. iaHb. c, dtk f. gH 
3. {(a, b, c, dk f, gH 
3. ((a, e. f. gHb, c dH 
4. I(aHb, c; 4 e, f, gl) 
5. Ha, b, c, d, eH 
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Fig. 2. Networks common to all articles in this volume. 

graph, where amount of structure is taken to mean the ratio of 
number of nodes to number of distinct positions. 

This point has some implications for power researchers. Almost 
every graph tested in the literature is highly symmetric with relatively 
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many nodes relative to distinct positions. Consequently, many mea- 
sures are likely to give similar results, making it difficult to distinguish 
among theories. In other words, graphs differ in their ability to 
discriminate among measures, but the field has to date chosen to test 
only graphs that emphasize similarities rather than differences. 

At the same time, these measures are likely to be (spuriously) 
associated with other graph-theoretic variables such as centrality ‘, 
The associations are spurious if they are entirely a function of the 
association of each variable with a third underlying variable, namely 
structural similarity. Consequently, tests of hypotheses regarding rela- 
tionships among measures of potential power and other graph-theo- 
retic variables are best conducted on graphs in which every node 
occupies a distinct position, such as shown in Fig. Z(i). Such graphs 
eliminate one source of confounding association. 

4. Role colorings 

As Everett and Borgatti (1991) have noted, partitions of nodes into 
equivalence classes may be viewed as a coloring of the nodes. A 
coloring is simply an assignment of colors to nodes, where the color of 
a node u is denoted C(U). Partitions of nodes into power classes can 
be discussed as a power c&ring. Colorings that reflect a classification 
of nodes according to some notion of position or role are termed role 
co~o~~~gs. A common characteristic of all role colorings is the idea that 
a node’s color is related to the colors of the nodes it is adjacent to. In 
the language of social roles, this means that occupants of a given 
social position tend, ipso facto, to interact with occupants of certain 
types of positions, as when a doctor interacts with nurses, patients and 
other doctors while a teacher interacts with students, parents, admin- 
istrators and other teachers. Each of these roles in turn tends to 
interact with a distinctive collection of roles. The partition of struc- 
turally isomorphic nodes into orbits discussed in the previous section 
is an example of a role coloring. In this section, we consider how 
power relates to two additional role colorings. 

’ Using a nominal measure of association, of course. 
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The reason for considering such colorings is the intuitive conviction 
shared by several researchers that a node’s power derives from “the 
availability of alternative exchange relations, the unavailability of their 
relations’ alternative relations, and so on” (Markovsky et al. 1988:224). 
Similarly, according to Cook et al. (1983:301), “positions are relatively 
‘powerless’ in a network. . . to the extent that they have few exchange 
opportunities (i.e. few alternative sources of values resources) and 
have direct connections only to actors who have highly reliable alter- 
native sources of supply”. According to Marsden (1987:147, footnote 
51, a node “may be exploitable for two reasons: It may have few 
alternative relations, or all of its alternatives (irrespective of how 
many in all are available) may be in a position to exploit others. The 
second condition of exploitability can lead to consideration of quite 
distal features of network structure”. 

Thus power is viewed as being determined by the power of a node’s 
neighbors, whose powers in turn are determined by the powers of 
their neighbors, and so on. Such a view is clearly reminiscent of the 
concept of social role. We begin by defining a role concept that we 
shall call an ecological coloring: 

Definition 2. Let N(u) denote the set of nodes that u is adjacent to. 
Let C(U) denote the color of a node and let C(N(u)) = {UC(u): u E 
N(u) represent the set of colors associated with U’S neighbors. Then a 
coloring C is ecological if for any pair of nodes a and b, C(a) = C(b) 
if C(N(a)) = C(N(b)). 

According to the definition, a coloring is ecological if every node’s 
color is entirely determined by the colors of its neighbors. Conse- 
quently, if a node u is surrounded by red and blue nodes only, and 
another node u is also surrounded by red and blue nodes only, then u 
and L’ must be colored the same. An example of an ecological coloring 
is given in Fig. l(f). Note that every pair of nodes colored differently is 
surrounded by a different set of colors, as required. An example of a 
non-ecological coloring is given in Fig. l(g). We hypothesize that the 
partition of nodes according to power forms an ecological coloring: 

Proposition 1. Let P be a power coloring of an exchange network in 
which all nodes are allowed an equal number of exchanges. Then 
Va, b, P(a) = P(b) if P(N(a)) = P(N(b)). 
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Table 3 

Partitions consistent with Theorem I and Proposition 1, from the five-node line in Fig. l(h) 

Theorem I 

((a, eHb, dltc)) 
(Ia, b. d. eIW 

(Ia, c, eHb, dH 

{(a. e)(b, c, dH 

(la, b, c, d, eH 

Proposition I 

{(a, c, elk. dl) 

{{a, b, c, d, eH 

According to Proposition 1, if nodes a and b are surrounded by the 
same collection of powers, then a and b are themselves of equal 
power. Thus, if a is surrounded only by low-power nodes, and b is also 
surrounded only by low-power nodes, and a and b will be equally 
powerful. Note that the low-power status of a’s and b’s alters is 
determined by the power of their respective neighbors, whose power is 
determined by their neighbors, and so on. In this sense, an ecological 
power coloring represents an equilibrium state of the system in which 
all these dependencies are simultaneously satisfied. 

The effect of Proposition 1, like Theorem 1, is to limit the space of 
possible of power outcomes. For example, for the five-node line 
shown in Fig. l(h), there are five out of 52 possible partitions that are 
consistent with Theorem 1 (see Table 3). Of these, only two are 
consistent with Proposition 1. One of these is the experimentally 
observed partition {{a, c, e), {b, d}). The other is the trivial partition in 
which all nodes are assigned equal power. Another example is given 
by the graph in Fig. 2(d). Again, five partitions are consistent with 
Theorem 1, but only two of these are consistent with Proposition 1 
(Table 4). Of these, one is the experimentally observed partition 
({a, e, .f, g}, {b, c, d)}, while the other is the complete partition ‘. 

Table 4 
Power partitions consistent with Theorem 1 and Proposition I, for the graph in Fig. 2(d) 

Theorem 1 Proposition 1 

(ia)b. c, Me3 f. 611 
Ha, b, c, d)te, f. 811 
((a, e, f. dlb. c, 4) 
Hal(b, c. d. e. f, g)) 

((a. e. f. gHb. c. d)I 

((a, b, c. d. e, f, 9)) 
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Table 5 

Power partitions consistent with Theorem 1 and Proposition 1, for the ‘T’ graph in Fig. 2(c) 

Theorem 1 

(la, c)(b)(d)(e)) 
((a. c. b)WHeH 
Ua, c, d)Ib)(ell 
{(a, c, eHbHdl1 

(lb, dl{eHa, cl1 

(lb, eNdHa, cl) 

(Id, eHa, cl(b)) 

({a, c, b, dllell 

{la, c, b, elldll 

Ud, eNa, c, bll 

((a, c, d, eHbH 

(lb, e&a, c, dll 

I{b, d, elIa, cl) 

lie, a, cllb, dN 

(la, b, c, d, ell 

Proposition 1 

({a, cHbHdHeH 

(la, c, eHbl(dll 

(ld, eNa, cl(b)) 

(lb, ella, c, dll 

(Ie, a, cHb, 41 

((a, b, c, d, ell 

Another graph that has been tested in the literature (Markovsky ef 
al. 1988) is the five-node ‘T’ graph shown in Fig. 2(c). Fifteen 
partitions are consistent with Theorem 1. Of these, six are ecological, 
including the experimentally observed partition ({a, b}, (b}, Id, e}}. 

It should be noted that the natural partitions induced by Markovsky 
et al.‘s Graph-theoretic Power Index (where two nodes occupy the 
same class if and only if they have the same GPI score), are not 
necessarily ecological. An example is given by the graph in Fig. l(i), in 
which GPI violates Proposition 1 by assigning different values to the 
nodes labeled 3 and 4. However, other axioms of the original 
Markovsky et al. theory would suggest that 3 and 4 would never 
exchange, and therefore no difference in power can be observed. 

5 The reader is reminded that, in all cases, experimental results reported in this paper are for 

the case in which all nodes are permitted only one exchange per round. It is interesting to note 

that when nodes a, b, c, and d are allowed two exchanges per round, the results are consistent 

with the following partition ((a), (b, c, d, e, f, g)). While a formal generalization of our proce- 

dures to these kinds of conditions is outside the scope of this paper, it can be seen that the 

exchange opportunities facing (e, f, g) are quite different from those facing (a, b, c, d}. In fact, 

the connections among these types of points represent fundamentally different things, which are 
best represented by two different graphs (with different kinds of lines) on the same nodes. Since 

our definitions and propositions extend readily to multiple relations, this represents one path for 

generalization. Taking this approach leads to a set of partitions which does in fact include the 
experimentally observed partition. 
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Furthermore, in the Markovsky et al. formulation, the fact that one 
node has a GPI score of four while the other has only a three does not 
imply any difference in exchange rates with nodes with GPI zero. 
Hence, the theory as a whole would predict equal power for 3 and 4, 
in accordance with Proposition 1. In fact, it can be shown that the 
theory is always ecologically consistent ‘. Bonacich’s (19871 measure 
of power is also ecological in spirit, since a node’s power is literally 
the sum of the powers of its neighbors (see Bonacich’s equations 1 
and 3, pp. 1172-1173). 

One shortcoming of the ecological coloring is that it captures only 
half of the intuitive notion that power is a function of the power of a 
node’s neighbors. In an ecological coloring two nodes with the same 
power neighborhoods are required to have the same power, but the 
converse need not be true. That is, several nodes could be assigned 
the same color, yet have radically different neighborhoods. An exam- 
ple is given by the coloring in Fig. l(i) which assigns the same color to 
all peripheral nodes, and a different color to the central node. The 
coloring is ecological since every pairs of nodes surrounded by the 
same colors are colored the same. But consider the neighborhoods of 
the greens. Two of the greens have both a green and a red in their 
neighborhoods, while the other has only a red. If colors correspond to 
power levels, this would mean that nodes could be equally powerful, 
yet be surrounded by very different ‘power environments’. 

The converse of an ecological coloring would require that any two 
nodes assigned the same color have the same colors in their neighbor- 
hoods. This coloring is well known in the network role literature as 
regular equivalence (White and Reitz 1983; Borgatti and Everett 1989; 
Everett and Borgatti 1991). It is defined as follows: 

Definition 3. A coloring C of a graph G(V, El is regular if Vu, b E 
V, C(a) = C(b) implies C(N(a)) = C(N(b)). 

’ Suppose P is a coloring consistent with Markovsky et ul. To disconfirm the assertion, we must 

find a graph in which P assigns different colors (powers) to a pair of adjacent nodes who have 

the same colored neighborhoods. Assume node a is assigned color 1 (‘high power’) and node b 

is color 0 (‘low power’). Since a and b are adjacent, 0 E P(N(a)) and 1 E P(N(b)). Then, since P 

is ecological there exists c E N(b) such that P(c) = 0. But, according to Axioms 2. 3, and 3 of 

Markovsky rt al., this would mean that a could not exert power over b since b would never seek 
to exchange with a. (Similarly, there must exist d E N(a) such that P(d)= 1. This also is 

forbidden by the axioms). 
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Table 6 

Powef partitions consistent with Theorem 1 and Propositions 1 and 2, for the graph in Fig. 2(f) 

Theorem 1 

((a, b), {c)(d)} 

((a, b, cl, IdI} 

({a, b, d), (cl) 

Ha, b), (c, d)) 

{Ia, b. c, 4) 

Proposition 1 

{(a, b), (cl, {dH 

{(a, b, 4, {c)) 

((a, b), k, dH 
({a, b, c, 4) 

Proposition 2 

(la, b), (4, kN 

((a, b, c, 4) 

To complete the formalization of the intuitive notion of power as a 
function of the levels of power present (or absent) in a node’s 
neighborhood, we tentatively propose that power partitions are regu- 
lar, as follows: 

Propositions 2. Let P be a power coloring in an exchange network in 
which all nodes are allowed an equal number of exchanges. Then 
\Ja, b E V, P(a) = P(b) implies P(N(a)) = P(N(b)). 

The effect of Proposition 2, like Theorem 1 and Proposition 1, is to 
further limit the space of possible of power outcomes. For example, 
for the four-node ‘Stem’ graph in Fig. 2(f), four partitions satisfy both 
Theorem 1 and Proposition 1. Of these, only two satisfy Propositions 

2, one being ((0, bl, (cl, {d}l, and the other being the complete 
partition (see Table 6). Unfortunately, the experimental results 
(Markovsky et al. 1991) are most consistent with the partition ({a, b, d), 
{c}), which is not regular. In the experiment, c is a high power node 
that dominates a, b, and d. While the extent of c’s observed domi- 
nance over d is not identical to its dominance over a and d, the 
difference is not statistically significant. Hence it is possible that a, b 
and d belong to the same power class, which would contradict the 
proposition. 

A review of all other published experimental results (one exchange 
per round) shows that in all cases but one, the experimentally ob- 
served power partition satisfies Proposition 2. The exception (besides 
the ‘stem’ above) is the ‘T’ graph in Fig. 2(c), in which the experimen- 
tally observed partition ({a, cl, {bj, (d, e)) is not regular (see Table 7). 
This suggest that either the proposition or the experimental data are 
wrong, or there are factors influencing power outcomes that are 
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Table 7 

Power partitions consistent with Theorem 1 and Propositions 1 and 2, for the five-node ‘T’ graph 
in Fig. 2(c) 

Theorem 1 

Ita, cHbHdH4 

Ha, c, bHdHel1 
(la. c, dHbHeH 

Ha, c, eHbHdH 

Ub. MeHa, cl) 

Ub, eNdHa, cl) 

(Id. elIa, cl(b)1 

((a, c. b, d)(e)) 

{(a. c. b, e)(d)} 

Ud, eKa, c. bH 

((a, c, d, eHbH 

Hb. eNa, c, dl) 

Ub, d. eHa. cl) 

Ue, a, cHb, d)J 

((a, b, c, d, e)) 

Proposition I 

((a, c)(bHdHeH 

{(a, c. eNbl(dH 

Nd, eHa, cHbH 

{(b, eNa, c, dll 

(6% a, cHb, d)) 

((a, b, c, d. ell 

Proposition 2 

((a, cHb)kNeH 

I(b, e)(a, c, d)) 

k a, clib. dl) 

((a, b, c, d, e)l 

exogenous to the exchange-opportunity graph itself. We consider the 
latter explanation first. 

One notable result of the experiments Markovsky et al. have 
conducted on this graph is that virtually no exchanges were observed 
between b and d - almost as if they were unconnected. If we actually 
did delete the link between the two and recompute the colorings (as 
Markovsky et al. do with their GPI index), the experimentally ob- 
served partition would no longer be eliminated and would, in fact, be 
the only non-trivial partition to satisfy both propositions and Theorem 
1 (Table 8). 

It is important to note that the need to delete this link is, according 
to Markovsky et al., quite predictable, but doing so requires more 
information than is contained in the structure of the graph alone. It 
requires an assumption about the strategy and motivations of the 
actors, which is that actors evaluate potential trading partners, and 
only seek to exchange with them if they can expect to obtain a 
favorable deal, or if they cannot obtain a favorable deal elsewhere. 
Thus, certain pairs of actors, if rational, would not be expected to 
exchange with each other, and any link between the nodes they 
occupy might as well be absent. The failure of Proposition 2 when 
applied to the original exchange opportunity network would seem to 
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Table 8 
Non-trivial a power partitions consistent with Theorem 1 and Propositions 1 and 2, for all 
‘common’ graphs in Fig. 2 

Fig. 1 Ecological 2: regular 

2(d) 

2(e) 

2(f) 

2(g) 

2(h) 

2(a) 

2(b) 

2(c) 

{a, c, d)(b) 

(a, dKb, cl 

(a, cHbklH4 
(a, c, eHbHd) 
(4 eHa, c)(b) 
Ib, elk, c, dJ 
(e, a, cHb, d) 

{a, e, f, gHb, c, d) 

{a, eHb, dHcHf1 
ia, e)(b, dk 0 
{a, e, fHb, dHc1 
(a, b, d, eHc)If} 
(a, e, fHb, c, 4 
(a, c, eHb, cl, f) 

(a, bHcHd) 
(a, b, dk) 
(a, bk d) 

{a, b, 4 e)(c) 

{a, bHcklKe)~f) 
{a, b, dHcHe)(f) 
{a, b, dlkk fl 
{a, bk, fHdH4 
{a, bHd, OkHe) 
{a, Me, f)kHdl 
{a, b, fltcHd)(e) 
{a, b, fl(cHd, e) 
Ia bHd, e)IcHf) 
{a, bKd, e, f)(c) 
(a, bHd, ek f) 
(a, bk, e)Id, f) 
(a, bk cl, fHe) 
(a, bk, d)(eHfl 
(a, b, c, fklk) 
(a, b, cHdHe)(f) 
Ia, b, cHd, f}(c) 
(a, b, c, dHeHfl 
k, fHa, b, cl, e) 

2(i) 79 partitions 

(a, c, dHb~ 

(a, Mb, cl 

(a, c)Mdk) 

{b, eb, c, d) 
k, a, clb, d 

{a, e, f, d&h c, d 

{a, elb, dHcHf) 

(a, e, fHb, c, dl 
Ia, c, e)(b, d, 0 

(a, bM4 

Ia, b, d, ek) 

{a, bkkN4tf~ 

k, fk b, 4 el 

bHb)kJkNeHfl 
(a, f)Ib, elk, d) 
Ia, d, Nb, ‘c, 4 

a In all cases, the partition in which all nodes have equal power satisfies both propositions and 
Theorem 1. 
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underscore the necessity of both actor-based and node-based ele- 
ments in a theory of power in exchange networks, as Markovsky (1987) 
and Markovsky et al (1988) point out. The actor-based elements deal 
with things like strategies and motivations, while the node-based 
elements deal with the structure of the exchange opportunity graph 
(which might be the original network provided by the experimenter, 
but might also be a modification produced by the actors who pre- 
dictably ignore certain links). 

On the other hand, given the proposition’s probable failure on the 
four-node ‘stem’ as well, it is also possible that this portion of our 
intuition about powers is simply wrong. Perhaps it is not the case that 
two nodes with equal power must have the same distribution of 
powers as neighbors. In one sense, this would not be surprising. If we 
are concerned with the mechanisms or processes by which laws like 
Proposition 1 and 2 are maintained, we have little difficulty under- 
standing Proposition 1: a node’s power is determined by the power of 
its neighbors, hence two nodes with the same distribution of powers in 
their neighborhoods must be equally powerful. However, the reverse 
is more difficult to justify. If we accept the assertion that a node’s 
power influences the power of its neighbors, we must also accept that 
a given node cannot wholly determine the power of its neighbors, if 
they have neighbors of their own. On the other hand, the lack of an 
obvious mechanism is not in itself evidence against a principle. A 
definitive test would be a graph in which all regular colorings place a 
given pair of nodes in the same power class, but experimental results 
show a statistically significant difference in exchange rates, either with 
each other (if adjacent) or with equivalent others. This does not occur 
in any graph tested to date. 

5. Conclusion 

In this paper, we have sought to provide formal expression for several 
intuitive notions regarding the nature of power in experimental ex- 
change networks. One fundamental notion is that power is a function 
of position. We formally define position in terms of graph automor- 
phisms, then explore the consequences of this definition. For simplic- 
ity, we consider only nominal aspects of power, which is to say that we 
restrict all predictions to stating only whether a given pair of nodes is 
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of equal or different power. One immediate result is that, for highly 
structured graphs in which many nodes occupy only a few distinct 
positions, the space of possible power outcomes is sharply restricted. 
Further, the outcome space for any structural variable, such as cen- 
trality or a proposed measure of potential power, is similarly re- 
stricted, resulting in higher than otherwise expected associations 
among structural variables. One lesson to be drawn from this fact is 
that researchers should not test theories on highly structured graphs, 
since these are the least likely to distinguish between competing 
theories. Unfortunately, most of the graphs tested in the literature to 
date are in fact highly structured. 

Another fundamental notion about power is that a node’s power is 
a function of the powers of its neighbors, just as their power is 
determined by the powers of their neighbors, and so on. We formalize 
this frequently expressed idea through the use of two role colorings. 
One, ecological coloring, states that if two nodes have the same power 
neighborhoods (i.e. distinct levels of power exhibited by their neigh- 
bors), then they must have equal power. The other, regular coloring, 
states that if two nodes have equal power, then we can infer that they 
have the same power neighborhoods. Together, these colorings imply 
a one-to-one relationship between the power of a node, and the 
power(s) of its neighbors. By assuming that power partitions form 
colorings that are both regular and ecological, we find that the sample 
space of possible power outcomes is even further reduced, leaving 
only a few possibilities. We show that both the theory of Markovsky et 
al. (1988) and the power measure by Bonacich (1987) are ecological. 
Experimental results are consistent in every case with the notion that 
power is ecological, but two experiments violate the principle of 
regularity. Unfortunately, neither experiment is definitive in this re- 
spect, so final judgement on regularity awaits a result in which a 
statistically significant difference is observed between two nodes that, 
according to regularity, must be equally powerful. 

Three clear areas for further research are evident. First, we can 
generalize the approach to handle variable numbers of exchanges per 
round. Second, we can develop a parallel approach for handling 
ordinal rather than nominal power relations. Third, we can systemati- 
cally evaluate other theories of power to see whether they conform to 
our propositions. 
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