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Recent work by Borgatti and Everett (1989) has shown that the collection of regular equivalences 

described by White and Reitz (1983) forms a lattice. In this paper, we present a procedure called 

iterated roles for tracing systematic paths through the lattice. At the heart of iterated roles is the 

proof that the regular equivalence of a regular equivalence is itself regular. The procedure enables 

us to find several otherwise unknown regular equivalences, including an extension of automorphic 

equivalence (Everett 1985) that is not sensitive to degree. A key benefit of iterated roles is the 

generation of sequences of hierarchically nested equivalences. This capability suggests an ap- 

proach to role structure analysis in which one examines not just one blocking of actors but a series 

of increasingly broad simplifications of the data. Consequently, we are able to (a) choose the level 

of simplification that proves most illuminating, and (b) view both to broad structural outlines of 

the data and the finer details simultaneously. 

1. Introduction 

Since 1971, when Lorrain and White introduced structural equivalence, 
a variety of formal mathematical models of social role have been 
advanced. For the most part, these various models have been thought 
of as alternatives or successors to each other: when introducing a new 
model, authors have typically surveyed the existing models, pointed out 
their weaknesses, and presented their own model as a solution. For 
example, in 1978, Sailer criticized structural equivalence for requiring 
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that equivalent actors be related to the same others, and introduced an 
alternative concept called structural relatedness. Later, White and Reitz 
(1983) refined Sailer’s model and gave us regular equivalence. Similarly, 
Winship and Mandel (1983) introduced role similarity, Winship (1974) 
and Everett (1985) introduced automorphic equivalence, Breiger and 
Pattison (1986) developed local role algebras, and so on. 

Recently, however, some progress has been made in the study of the 
relationships between many of these measures (Borgatti and Everett 
1989). We know, for example, that the definition of regular equivalence 
describes a collection (in fact, a lattice) of role equivalences, of which 
structural equivalence, automorphic equivalence, REGE equivalence 
(White and Reitz 1984), and, with minor modifications, Winship and 
Mandel equivalence, are all members. The list is not exhaustive: even 
very small graphs may contain a very large number of distinct regular 
equivalences, each one a potential model of the role structure of the 
graph. Borgatti and Everett provide an algorithm (known as REGE/A) 
for generating many of these equivalences, but it is not well-suited to 
systematic, open-ended exploration of the lattice. 

In this paper, we present a procedure for tracing systematic paths 
through the lattice. The procedure, called iterated roles, generates new 
regular equivalences, including an extension of automorphic equiv- 
alence that is not sensitive to degree. A key feature of iterated roles is 
the generation of sequences of hierarchically nested equivalences. This 
capability suggests a new approach to role analysis in which one 
examines not just one blocking of actors, but a series of increasingly 
broad simplifications of the data, thus allowing the analyst to (a) 
choose the level of simplification desired, and (b) simultaneously view 
both the broad structural outlines of the data and the finer details. 

2. Notation 

Let G be a labelled graph with vertex set V and edge set E. An 
automorphism of G is a permutation 7~ of V such that (a, b) E E iff 
(~(a), r(b)) E E. 
Definition. Two vertices a, b E V are structurally equivalent iff the 
permutation (a, b) is an automorphism of G. 

For more information on structural equivalence, the reader is referred 
to Lorrain and White (1971). 
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Definition. Vertices a, b E V are automorphically equivalent iff there 
exists an automorphism r such that ~(a) = b. 

For more information on automorphic equivalence, the reader is re- 
ferred to Everett (1985) Everett and Borgatti (1988) and Boyd and 
Everett (1988). 

Definition. If = is an equivalence relation on V then = is a regular 
equivalence iff for all a, b, c E V, a = b implies that if (i) aRc then 
there exists d E V such that bRd and d = c, (ii) cRa then there exists 
d E V such that dRb and d = c. 

For more information on regular equivalence, the reader is referred to 
White and Reitz (1983) and Borgatti and Everett (1988). 

We note that structurally equivalent vertices are automorphically 
equivalent, and automorphically equivalent vertices are regularly equiv- 
alent. The converses, however, are not true. 

3. Hierarchical approach to role analysis 

The approach we have in mind is illustrated in simplest form by the 
directed graph in Figure 1. REGE, the standard computer program 
designed to find the maximal regular equivalence, partitions the actors 
into three classes: 

{a}{b, c, d){e, f, g, h}. 

For most analysts, this is the broadest and perhaps most intuitive 
partition. However, it is also clear that b and c are more similar to 
each other than they are to d, just as e and f are more similar to each 
other than to g or h. This is certainly the case if you are interested in 

a 

b 

Figure 1. 
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Table 1 

Equivalence Vertex 

a bcde f gh 

Identity 

Structural xxxx 
Automorphic xxxx xxxx xxxx 
REGE xxxxxxx xxxxxxxxxx 

Note: Singletons are indicated by full points. 

perfect substitutability (Everett 1983, and are therefore concerned with 
degree. The appropriate measure of substitutability is automorphic 
equivalence, which partitions actors as follows: 

Of course, the strictest measure of role similarity is structural equiv- 
alence because it requires equivalent actors to be related to precisely 
the same people. Thus { g, h } are more similar to each other than any 
other pair. The partition according to structural equivalence is as 
follows: 

Note that each of these models is hierarchically nested within the last. 
We can usefully display this information via the familiar dendrogram 
of hierarchical clustering, as shown in Table 1. For completeness, we 
have added the identity equivalence to the dendrogram, which is always 
regular. 

We argue that by computing all of these models and placing them in 
their hierarchical context, a richer understanding of the structure of the 
graph is obtained. A side benefit of this approach is to emphasize that 
the differences between the three models discussed so far should be 
seen primarily in terms of the “coarseness” and “fineness” of the 
partitions they induce rather than in terms of different understandings 
of the role concept. All of the models belong to the family of regular 
equivalences and therefore embody the same general concept of role: in 
all models, two actors are said to play the same role if and only if they 
have the same relations with players of other roles. 
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a 

e j g h i 

Figure 2. 

Of course, there is no reason to be limited to the “standard” regular 
equivalences used above. A very useful equivalence is a “regularized” 
version of Winship and Mandel equivalence (for a discussion of regu- 
larization see Borgatti and Everett 1989). Whereas REGE equivalence 
always yields the trivial complete partition when applied to undirected 
graphs, Winship and Mandel equivalence (like automorphic equiv- 
alence) does not. And unlike automorphic equivalence, the Winship 
and Mandel model is not sensitive to degree. The regularized Winship 
and Mandel model is nested somewhere between automorphic equiv- 
alence and REGE equivalence. 

More esoteric equivalences can also be used, such as the maximal 
regular equivalence preserving centrality. This and other equivalences 
generated by the REGE/A algorithm are described in Borgatti and 
Everett (1989). 

For some graphs, however, none of the known equivalences will 
capture the intuitively best structure. Consider, for example, the undi- 
rected graph in Figure 2. 

Since it contains no sinks or sources, the maximal regular equiv- 
alence (which is the one computed by the standard program REGE) is 
the trivial complete partition. Obviously, in such a case we would like 
to use a less inclusive regular equivalence. The automorphic partition is 
as follows: 

The structural partition is: 

{~}{~}{c){~~{e~ f Hd{k i>- 
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None of these equivalences (including REGE) capture the intuitively 
best partitions, which are 

No. 1 {a}{b, c, d}{e, f, g, h, i> 

No. 2 {a, e, f, g, h, i}{b, c, d}. 

An alternative approach is provided by the concept of iterated roles, 
which not only serves to generate new equivalences, but does so in such 
a way that the relationships between these equivalences is known. 

4. Iterated roles ’ 

Let P be a partition of the vertex set I/. The natural map ii : I/ + P is 
defined for each u E I’ by letting ii(u) be the set in P that contains 
vertex V. From G construct a new graph G’, called the image graph of 
G, with vertex set P and edge set R’ where sR’t iff there exists 
a, b E V with aRb and i?(a) = s and ii(b) = t. Hence 5 can be 
thought of as a graph homomorphism from G to G’. 

If we take the automorphic partition 

PI = {e, f, h, i>: 

of the graph in Figure 2, then the image graph G’ is given by Figure 3. 
If we now find the maximal automorphic equivalences for the graph 

in Figure 3, we obtain the partition 

’ The authors would like to note that Douglas R. White has independently developed ideas 
similar in spirit to those contained here. We have benefited from his encouragement. 
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p3 

” 

p4 

PI0 p2 

Figure 3. 

which in terms of the original graph G corresponds precisely to 

{a}{b, c, d}{e, f, g, h, i>. 

Note that to obtain this partition we have employed only automorphic 
equivalence (albeit twice) and yet the result does not suffer from the 
limitation that members of a class have the same degree, as is suffered 
by single applications of automorphic equivalence. The first iteration 
gives substitutable individuals while the second gives substitutable 
classes. Iterated roles give a measure of degree of substitutability in the 
sense that vertices that are automorphically equivalent are primarily- 
substitutable; but if only their automorphic equivalence classes are 
substitutable then the vertices are secondarily-substitutable, and so on. 

Interestingly, taking automorphic equivalence one more time results 
in the partition 

{k c, d){a, e, f, g, h, i>, 

which, it will be recalled, was previously described as one of the 
intuitively best partitions. To see why it is so desirable, redraw the 
graph in Figure 2 such that node a is placed near { e, f, g, h, i } : the 
result is the partition determined by the fact that the graph was 
bipartite. 

We note that the partition of V induced by secondary substitutabil- 
ity is itself a regular equivalence on G. In fact, any automorphic 
equivalence followed by another automorphic equivalence is always 
regular. Further, any regular equivalence of a regular equivalence is 
regular. We now prove this more general result. 

Definition. Let ii : G -+ G’ be defined as above. Then n” is a regular 
homomorphism (i.e. induces a regular partition) iff for all a, b E V, 
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n”(a) R’fi( b) implies there exists c, d E V such that cRb, aRd and 
6(c) = ii(a) and E(d) = fi( b). A proof of this result is found in White 
and Reitz (1983). 

Theorem 1. Let 5 : G -+ G’ be regular and r : G’ + G” be regular, then 
7. ii is regular. 

PruojI Suppose r . fi( a) R”-r - fi( b). Since r is regular then there exists 
G(c) and ii(d) such that fi(c)R’i(b), fi(u)R’ii(d), T-Z(C)=~.~“(U), 
and ~*fi(d) =~*fi(b). Since 5 is regular and ii(c)R’n”(b) then there 
exists e, f such that eRb, cRf, ii(e) = n”(c) and Z(f) = ii(b). Since we 
also have fi(u)R’Z(d) then there also exists g and h such that gRd, 
aRh, ii(g) = ii(u) and ii(h) = fi(d). 

Hence we have that eRb and aRb with r . ii(u) = T . n”(c), but since 
ii(c)=fi(e) it follows that r.fi(a)=r.fi(e). Also ~.i(b)=~.n”(d) 
but n”(d) = fi( h) so that 7. n”(b) = 7 - n”(h). Therefore 7. ii is regular. 
n 

Corollary. Iterated automorphic equivalence is regular. 

Taking a regular equivalence of another regular equivalence provides 
a means of simplifying the initial model, generating a new model that is 
coarser than the first without contradicting it. The graph in Figure 3 is 
a simplification of the original graph in Figure 2. In Figure 4, we take 
the simplification process to its logical extreme, ending with the maxi- 
mal regular equivalence where all vertices are equivalent. For the series 
in Figure 4 (summarized in the dendrogram of Table 2), we chose 
automorphic equivalence as the simplifying operation at each step. 
Clearly, the degree of simplification obtained will vary depending on 
which regular equivalences are chosen. A maximal regular equivalence 
followed by maximal regular equivalence will by definition provide no 
simplification. Thus, running REGE on the results of REGE will 
accomplish nothing. In fact, any regular equivalence followed by REGE 
will be the same as applying REGE directly, and any regular equivalence 
applied after REGE has no effect. 

Figure 4. 
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Table 2 

Automorphic reduction for graph in Figure 2. 

Equivalence Vertex 

c b d a g f e i h 

Identity 

Structural . xxxx xxxx 
Automorphic xxxx xxxxxxxxxx 
Automorphic 2 xxxxxxx . xxxxxxxxxxxxx 
Automorphic 3 xxxxxxx xxxxxxxxxxxxxxxx 

REGE xxxxxxxxxxxxxxxxxxxxxxxxx 

Note: Full points indicate singletons 

Obviously, taking structural equivalence of a structural equivalence 
gives a structural equivalence. However, this will not produce any 
equivalences which were not deducible directly from the original graph. 
Once all pairs of structurally equivalent vertices are known then the 
complete lattice of structurally equivalent vertices can be deduced. In 
addition, iteration of maximal structurally equivalent vertices is not 
possible as we can see from the following theorem. 

Theorem 2. Let ii : G + G’ be a maximal structural 
G’ contains no structurally equivalent vertices. 

Pro06 Let Pi and Pi be two structurally equivalent 

equivalence. Then 

vertices in G ‘. We 
shall prove that the elements of P, are structurally equivalent with the 
elements of Pi, contradicting the maximality of fi. Let a E Pi and 
b E Pi, and suppose aRc where c E Pk. Then Pi R ‘Pk. Since Pj is 
structurally equivalent to Pi, we have that P,R’P,. Hence there exists 
d E 4. and e E Pk with dRe. Since the elements of Pi are structurally 
equivalent we must have that bRe. Also, since the elements of Pk are 
structurally equivalent then bRc. Hence, whenever aRc then bRc. A 
similar argument shows that whenever dRa, then dRb so that a and b 
are structurally equivalent and the result follows. 

Hence the only combinations of the three well-known regular 
equivalences to yield new equivalences are: automorphic with automor- 
phic and automorphic with structural. There are, however, a variety of 
other regular equivalences that could be used to find iterated regular 
equivalences. Any equivalence generated via REGE/A, for example, 
may be used either as a starting point or as a simplifying operation. 
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5. Iterated automorphic equivalence 

In this section we consider paths through the lattice generated by 
repeated applications of automorphic equivalence. Consider again the 
reduction series shown in Figure 4 and Table 2. In this case, the 
iterative process yields quite sensible results at every step. Some graphs, 
however, pose a problem. Consider, for example, the series in Figure 5. 
Here, one component has one more branch than the other, and so the 
procedure fails to notice the significant similarities between the compo- 
nents. 

The situation is remedied by a simple intervention on the part of the 
analyst: iterating the larger component separately. A single iteration of 
the left component yields a new structure identical to the right compo- 
nent, and now iterating the entire graph yields the more intuitive 
results shown in Figure 6. 

This technique works in general and any component or group of 
components can be iterated separately. When iterating components 
separately the maximum cross-component groupings will occur if the 
largest components are iterated first, followed by an iteration of the 
entire graph. 

The ability to iterate components separately is an example of a more 
general principle that allows subregions of a graph to be iterated 
separately. In Figure 6, the reason that we could collapse the leftmost 
branches of the graph separately was that a regular equivalence (in- 
deed, an automorphism) existed that sent the vertices of one branch 
onto the vertices of the other, while fixing all other points of the graph. 
We can, of course, use any regular equivalence which groups together 
desired vertices while leaving others fixed. The difficulty is in finding 
such an equivalence. A method based upon automorphic equivalence is 
described next. 

Consider the orbits of any subgroup of the automorphism group of a 

I;; E-l 
Figure 5. 
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Figure 6. 

graph. These form a regular equivalence. Obviously the orbits of any 
connected component of G will be the orbits of a subgroup of Aut( G) 
(it is the on e f king those vertices of G not in the component) and it is 
for this reason that we can iterate components separately. (However it 
is not the case that all orbits can be iterated separately.) 

An approach to finding useful subgroups of Aut( G) is to use one of 
the permutations as a generator. In this case, the elements of the cycle 
will be precisely the orbits of the subgroup generated by the permuta- 
tion. For example, suppose we wish to collapse vertices 1 and 5 of the 
graph in Figure 7 prior to iterating the rest of the graph. We need to 
fin& an automorphism which maps 1 to 5 but fixes as many other 
vertices as possible. Obviously, (1 5)(2 6) is such an automorphism, and 
no “smaller” automorphism (i.e. one fixing more points) exists. Thus to 
collapse 1 and 5 we must also collapse 2 and 6 in order to ensure that 
the resulting partition will be regular. 

We note that since two vertices a, b E V are structurally equivalent 
if and only if 7~ = (a b) is an automorphism, we can always group 
together non-maximal sets of structurally equivalent vertices to create 
new regular equivalences; we need not collapse all of them. Thus in 
Figure 8, we are free to collapse only { a, b} and { c, d }, thus allowing 
the next iteration to “see” the correspondence between points across 
components. 

5 6 7 8 

Figure 7. 
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It should be clear that most graphs will have a number of subregions 
that may be iterated separately, particularly if we consider not just 
automorphism orbits but all regular partitions. Each decision to iterate 
or not to iterate a region independently gives rise to a new path 
through the lattice. Each element of such a path is itself a graph with 
subregions, each of which may be iterated separately or in combina- 
tion. The lattice itself may be viewed simply as the set of all combina- 
tions of these independent decisions. 

Another problem that can occur in the analysis of real data is that 
there are not automorphically equivalent vertices and so the process 
fails to get started. In this case, we can start the process with a more 
liberal, more abstract regular equivalence. If even the maximal regular 
equivalence fails to give any simplification, a non-regular equivalence 
such as local regular equivalence (Everett et al. 1988) may be at- 
tempted. The iterative procedure is then applied to that result, keeping 
in mind that the resulting sequence of models will not be regular 
equivalences. Alternatively, ad hoc procedures may be employed, such 
as collapsing the two most similar points and restarting the iterations. 

6. Discussion 

From a theoretical point of view, the iterated roles procedure provides 
a tool for exploring the lattice of regular equivalences. From a method- 
ological point of view, iterated roles provide a way of viewing increas- 
ingly broad simplifications of the role structure of a graph. In this 
sense, it is very much like performing a hierarchical clustering such as 
advocated by Burt (1976). Burt computes a distance matrix consistent 
with a particular model of role (in his case, structural equivalence), and 
then submits it to hierarchical clustering, which generates a series of 
nested partitions of the vertices. The principal difference between this 
and iterated roles is that in Burt’s approach the partitions are generated 
by an atheoretical procedure (clustering), so none of the resultant 
partitions need conform to any formal model of role. In contrast, every 
partition in an iterated role analysis is a regular equivalence, and hence 
a model of role. A related distinction is that in Burt’s method, the 
hierarchical nesting is found in the pattern of deviations of data from 
an extremely strict theoretical model; in iterated roles, the nesting 
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results not from the data but from the theoretical models, which are 
nested. 

Computer programs for performing iterated role analyses are availa- 
ble as part of the NETPAC suite of network programs (Borgatti 1988). 
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