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In this paper, we explore the structure of the set of all regular equivalences (White and Reitz 

1983) proving that it forms a lattice, and suggest a general approach to computing certain 

elements of the lattice. The resulting algorithm represents a useful complement to the White and 

Reitz algorithm, which can only find the maximal regular equivalence of a graph. Using this 

algorithm, it is possible to compute several well-known equivalences, such as structural equiv- 

alence (Lorrain and White 1971), automorphic equivalence (Everett and Borgatti 1988) and 

Winship-Pattison equivalence (Winship and Mandel 1983). In addition, any number of other 

useful equivalences may be generated, providing suitable mathematical descriptions of them are 

available. 

Introduction 

Drawing on the work of social theorists such as Linton (1936), Nadel 
(1957) and Merton (1959) Lorrain and White (1971) introduced struct- 
ural equivalence as a mathematical representation of the social role 
concept. They defined structural equivalence as follows: 

Objects a, b of a category C are structurally equivalent if, for any 
morphism M and any object x of C, aMx if and only if bMx, and 
xMa if and only if xMb. In other words, a is structurally equivalent 
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to b if a relates to every object x of C in exactly the same ways as b 
does. From the point of view of the logic of the structure, then, a 
and b are absolutely equivalent, they are substitutable. 

(Lorrain and White 1971: 81) 

In short, two actors are identically positioned if they are equally related 
to every other in the network. However, as Sailer (1978) notes, the 
difficulty with using structural equivalence as a formalization of the 
role concept is that for two actors to play the same role, the model 
requires that they know the same people. Thus two doctors, despite 
similar patterns of interaction with patients, nurses, suppliers, and 
other doctors, are not necessarily seen as playing the same role. 

Several authors, including Sailer (1978), Winship and Mandel(1983), 
White and Reitz (1983), Everett (1985), and Breiger and Pattison 
(1986), have introduced models that more closely capture the notion of 
role. Of these, perhaps the most general is the White and Reitz 
formulation. 

White and Reitz define regular equivalence as follows: 

If G(V, R) is a graph (directed or undirected) with vertex set V, 
edge-set R, and no isolated vertices r, and = is an equivalence 
relation on I/ then = is a regular equivalence if and only if for all a, 
b, c in V, a = b implies both 
(i) aRc implies there exists d E V such that bRd and d = c; 
(ii) cRa implies there exists d E V such that dRb and d = c. 

Thus, two actors are regularly equivalent if they are equally related 
to equivalent others. Whereas in structural equivalence the focus is on 
the pattern of relations between individuals, in regular equivalence the 
focus is on the pattern of relations between positions or classes. Two 
doctors are equivalent because they have the same relationships with 
patients, nurses, and suppliers, not individuals. 

An aspect of White and Reitz’s definition of regular equivalence that 
has been largely overlooked is that it defines not one but a collection of 
regular equivalences, one of which is the equivalence computed by the 

’ For clarity of exposition, we assume G contains no isolates. In addition, we assume there is only 

one relation. However, all our results extend without difficulty to graphs with isolates and 
multiple relations. 
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REGE algorithm (White 1984; White and Reitz 1985), and another is a 
form of structural equivalence. For example, for the graph in Figure 1, 
the following partitions are all consistent with regular equivalence: 

(1) (a, b, c, d, e, f> 
(2) (a> (b, c) (d, e, f) 
(3) (a) (b) (c) (d, e) (f) 
(4) (a) (b) (c) (a) (e) (f) 

Partition #l, the maximal regular equivalence, is the one found by 
REGE. Partition #3 gives the maximal structural equivalence. It might 
be argued that neither the maximal regular equivalence nor the the 
maximal structural equivalence does a very good job of capturing the 
structure found in Figure 1. Rather, partition #2 would seem to be the 
best one. However, there are other regular partitions of this graph in 
addition to the ones shown, any one of which might be considered the 
“best” model. In the following section we describe the structure of the 
set of all regular equivalences of a graph. 

The class of regular equivalences 

Let G( V, R) be a graph. A partition 7~ of G is a subset of the power set 
of V, P(V), which satisfies the following properties: 

(i) fl is not an element of 7r 
(ii) For all u E V there exists exactly one A E 7~ with u E A 

If 7~ and 7~~ are partitions of G, we will write 7r0 5 ~7~ if for every 
B E Q, there exists C E vi such that B is a subset of C. 
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As we have already indicated, any regular equivalence is a partition, 
which we call a regular partition. 

The set of all partitions E(G) of a graph form a partially ordered 
set. That is, the relation I is reflexive, anti-symmetric, and transitive. 
In fact, E(G) forms a lattice. That is, given any two elements rO, 
7~~ E E(G) we can form the least upper bound CQ v n-, and the greatest 
lower bound r0 A 7~~ in E(G), where V and A are the join and meet 

operators respectively. 
Let R(G) be the set of all regular partitions of a graph G. Since 

R(G) is a subset of E(G), it follows that R(G) is a partially ordered 
set. 

We are now in a position to prove that the collection of regular 
equivalences R(G) form a lattice. 

Lemma. In a partially ordered set (X, I) if V H exists for any proper 
subset H of X, then (X, I ) is a lattice. 

The result is well known and can be found in standard algebra texts. 
However, the case when H = J!f requires special mention. Any element 
of X is then vacuously an upper bound, and so the existence of V@ is 
equivalent to saying X has a minimum element. (This element is often 
called the zero element; 0 E X is a zero if and only if for all x E X, 
0 I x.) 

Theorem 1. The set (R(G), I ) is a lattice. 

Proof. The partition w(G) which places each vertex in its own equiv- 
alence class (the equality partition) is easily seen to be regular for any 
graph. Obviously w(G) is a zero element and hence by the lemma we 
need only consider the least upper bound for non-empty collections of 
regular equivalences. 

Let -; be a family of regular equivalences indexed by I ( # 0). 
Define = as follows: a = b if and only if there exists a sequence 
Z,, Z,,..., Z,, with a = Z, and b = Z, such that for all j in the range 
1 5 j I n, there exists i, E I with the property Z,_i -‘, Z,. We shall 
prove that = is equal to v ( =i, i E I). It is well-known that = is the 
join for the family of partitions, but we shall include the proof of this 
result for completeness. 
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We first show that = is an equivalence relation: 

( ReJlexiuity) a = a since a, a is the required sequence. 
(Symmetricity) If a = b then there exists Z,, Z,, . . . , Z,, with the re- 
quired property. The sequence Z,,, Z,_ i, . . . , Z, shows that b = a. 
(Transitivity) Suppose a = b and b = c, putting together the two se- 
quences corresponding to the two equivalences guarantees that a = c. 

Hence = is an equivalence relation. 

If a = i b then a = b since the sequence a, b guarantees this. That is, 
= i I = so that = is an upper bound. Next we show that it is a least 
upper bound. 

Suppose @ is another upper bound. If a = b then there exists 

ZO, Zi,..., Z, with ZJ_i =‘, Z,, but since @ is an upper bound (i.e. 
E . . . i I CD) then Zj_i@Zj. But @ is an equivalence relation and 
therefore by transitivity Z,@Z,. That is, u@b so that = I @. 

Finally, we prove that = is regular. Suppose a = b and uRc. Since 
a = b there exists a sequence a, Z,, Z,, . . . , Z,_ 1, b where Zi =,, a. But 
since -,, is regular and uRc then there exists d, such that Z,Rd, and 
d, -,, c. In addition Z, =,2 Z, and since =12 is regular and Z,Rd, then 
there exists d, such that Z,Rd, and d, -12 d,. Continuing in this 
manner we produce a sequence c, d,, d, . . . until finally we have 

b pi, Zn-1, again by regularity there will exist a d, such that bRd, and 

d, zi, d,_,. The construction of the sequence c, d,,, d,, . . . , d, guaran- 
tees that c = d,. Consequently we have that if a = b and uRc then d, 
is such that bRd, and c = d,, which is precisely the first condition of 
regularity. The case cRu is similar, and hence = is regular. # 

The theorem provides an alternative non-constructive proof of the 
existence of a maximal regular equivalence. The existence of such an 
equivalence was proved in a constructive way by White and Reitz 
(1983). It should further be noted that R(G) is not a sublattice of 
E(G), since although the joins are constructed in the same way, the 
meets are not. In E(G) arbitrary meets are constructed as follows: if 
=, are a collection of partition equivalences, then 

UA =. b iff a=, b I I ) for all i. 
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Fig. 2. 

The following example shows that such a construction does not work 
for regular equivalences. In Figure 2 the partitions { { a, b } , ( c, e } , { d, 

fH and {{a, bL {c, fL {d, e>> are both regular. However the meet 
equivalence { a, b }, { c}, { d } , { e } , { f } } is not regular since although 
a = b and aRc there is no d = c such that bRd. 

The REGE algorithm provided by White and Reitz (White 1984; 
White and Reitz (1985) is based upon their constructive proof of the 
existence of a maximal regular equivalence and therefore only finds this 
element of the lattice. In many cases, this will be the complete partition 
i(G) which groups all vertices into a single class. The following 
theorem characterizes these cases. 

Theorem 2. The complete partition i(G) is regular (and obviously 
maximal) if and only if G contains no sources or sinks. (Sources are 
vertices with zero indegree and sinks are vertices with zero outdegree.) 

ProoJ Suppose G contains no sources or sinks and let a and b be any 
two vertices of G. Hence there exists c such that aRc and d such that 
bRd. Further, in i(G) all vertices are equivalent so c = d. The relation 
cRa is similar and hence i(G) is regular. 

Conversely, suppose i(G) is a regular partition. Suppose a is a 
source; since G contains no isolates there exists b such that aRb. 
Under i(G) b = a and therefore there exists d such that dRa and 
a = d, contradicting the fact that a is a source. The case where a is a 
sink is similar and the result follows. # 

Corollary. In any undirected graph, i(G) is the maximal regular equiv- 
alence. 
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These results are well-known to practitioners, but the proof has not 
previously appeared in the literature. 

As Faust (1988) has pointed out in passing, the workings of REGE 
may be understood in terms of sinks and sources. A discrete version of 
the algorithm is as follows: 

Step I: Divide all vertices into three classes: sources, sinks, and others. 
If no sinks or sources, exit (there is just one equivalence class). 

Step 2: Cluster together vertices whose set of alters have the same 
combination of classes. Let these new clusters become the classes. 
Repeat Step 2 until no change in class assignments. 

Step 3: Print equivalence classes. 

Non-trivial regular equivalences 

We call a regular partition non-trivial if it is not i(G), the complete 
partition, nor w(G), the equality partition. 

A graph is k-partite if the vertex set can be partitioned into k 
disjoint sets Vi . . . V, such that any edge only connects vertices in v to 
“; where i #j. A 2-partite graph is known as bipartite. It is well-known 
that a graph is bipartite if and only if it contains no odd semi-cycles. 
We shall say that a k-partite graph is a semi-complete k-partite graph if 
whenever there exists an edge connecting a vertex in v to a vertex in VJ 
then for every x E y there exists y E 5. such that (x, y) is an edge and 
for every p E J$ there exists q E V, such that (q, p) is an edge. An 
example of a semi-complete 3-partite graph is shown in Figure 3. 

Fig. 3 
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Theorem 3. If G is a semi-complete k-partite graph then the vertex 
partition Vi.. . V, is regular. 

ProoJ: The result follows directly from applying the definition of 
regular equivalence to the vertex partition Vi . . . V,. # 

Corollary. In an undirected bipartite graph the vertex partition V,, V, is 
regular. 

The corollary tells us that non-trivial regular partitions exist for undi- 
rected trees or any undirected graph which does not contain odd cycles. 
It should be noted that there exist graphs (both directed and undi- 
rected) for which no non-trivial regular partition exists. 

The need for alternative regular equivalences 

In this section we argue that there are two important situations where it 
is desirable to compute other elements of the lattice besides the 
maximal regular equivalence computed by REGE. 

One such situation is evident in the results of the foregoing section: 
the circumstance where the maximal equivalence is trivial. An example 
is provided by the directed graph in Figure 4. 

Clearly, the graph is highly structured. For example, the regular 
partition 

captures that structure quite nicely. But since the graph contains no 
sinks or sources, the maximal regular partition is 

{{a, b, c, d, e, f)) 

which completely misses the structure. 

a-b 

1 i 
C d 

I I 
e-f 

Fig. 4. 
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The second situation occurs when it is desired that the obtained 
equivalence or partition possess certain properties in addition to the 
basic requirements of regular equivalence. 

Consider for example the case of “true substitutability”. Under 
regular equivalence, there is no reason why a doctor with 2 nurses and 
5 patients can not be equivalent to a doctor with 3 nurses and 11 
patients. What determines the doctor role is that each player have the 
same relations with nurses and patients, regardless of how many such 
alters they might have. But two such doctors are not substitutable; they 
do not, for example, require the same amount of office space, the same 
number of parking spaces, and so on. This strict notion of substitutabil- 
ity is captured precisely by automorphic equivalence, as Winship (1974), 
Everett (1985) and Everett and Borgatti (1988) have shown. Automor- 
phic equivalence is a regular equivalence, but a particularly strict form 
of it which will rarely coincide with the maximal element of the lattice. 

It is worth noting that automorphic equivalence has another prop- 
erty in addition to substitutability that is not shared by all regular 
equivalences. This is the property that two automorphically equivalent 
nodes of G are also automorphically equivalent in the complement 
graph G’ (where two nodes are adjacent if and only if they are not 
adjacent in G). In graphs where the coding of information as arcs or 
not-arcs is arbitrary, this is a critical property. For example, if the 
vertices of a graph represent people and the underlying relation is their 
similarity or difference in age, then we would expect to get the same 
blockings whether we record an arc for “same age” or for “different 
age”! However, invariance under such simple coding transformations is 
not a property of regular partitions in general, as the graph in Figure 5 
demonstrates. 

Of course, there are cases where such invariance is not of interest. 
For example, in a primate study we might record an arc if a certain 
relation is observed between a pair of monkeys during the test period, 
and not otherwise. Thus while the presence of an arc has a definite 
meaning, the absence can mean either that a monkey does not have 
that relation with another, or that we have simply not observed it. The 
ones and zeros in the adjacency matrix are not measured in the same 
way, and in fact should not be treated as such. 

Another property that one might wish a regular equivalence to 
preserve is centrality (Freeman 1979). In an advice network, for exam- 
ple, it is clear that highly central actors play substantially different 
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G G' 
Fig. 5. 

roles than do peripheral ones. Yet regular equivalence will not neces- 
sarily observe this distinction. For example, for the graph in Figure 6, 
the following betweenness centralities are found: 

Vertex Betweenness 

a: 0.33 

b: 6.00 

c: 0.33 

d: 6.00 

e: 20.33 

f: 20.33 

g: 6.00 

h: 0.33 

i: 6.00 

j: 0.33 

Yet the following partitions are both regular: 

{{a, b, c, d, e, f, g, h, i, h, j>> 

{{a, c, h, j, e, f){b, d, g, i>>. 

Obviously, both partitions confound highly central points with maxi- 

Fig. 6. 
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mally peripheral points. In such a case we might prefer a less maximal 
but centrality-preserving equivalence such as: 

Clearly, what is needed are computational tools for constructing other 
regular equivalences besides the maximal regular equivalences. In the 
next section we describe such a procedure called REGE/A. 

Basic algorithm 

Consider the following simplified operating description of the standard 
REGE algorithm: 

Standard REGE: 

For all i, j, k, WI E V, i and j are equivalent at iteration t + 1 if for 
all k related to i there exists an m related to j such that 
(i) i is to k as j is to m 
(ii) E,(k) = E,(m). 

The phrase “i is to k as j is to m ” means that the ties linking i with k 

are the same as those linking j with m. In a network with just one 
relation, there are three ways an actor may be linked to another: either 
i + k, i + k, or i - k. Thus we can define a function R*( i, k): 

i 

1 if i + k only 

R*= 2 if j + k only 

3 if i-k 

0 otherwise 

The description of standard REGE may then be rewritten as follows: 

Standard REGE: 

For all i, j, k, m E V, i and j are equivalent at iteration t + 1 if for 
all k related to i there exists an m related to j such that 
(i) R*(i, k) = R*(j, m) 

(ii) E,(k) = E,(m). 
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The condition “E,(k) = E,( HZ)” means that k and m were put in the 
same class on the previous iteration. An actor’s class may be viewed as 
a categorical attribute of the actor, like gender or place of birth, that 
the procedure must preserve. By “preserve” we mean that two actors 
cannot be equivalent if their alters do not share this attribute. The only 
difference between the class attribute and one such as birthplace is that 
its value may change from iteration to iteration. 

White and Reitz describe regular equivalence as the situation that 
occurs when a set of actors are equally related to equivalent others. 
This is easily verified using the notation above. Consider again the 
graph in Figure 6. A regular partition is: 

{{a, c, h, j}> {b, d> g, i>> {e, f>> 

In Table 1, column 2, we give the list of alters for each actor for this 
graph. In column 3, we replace the actor’s identifying letter with the 
equivalence class in which they are placed by the above partition. It is 
quickly seen that while actors in a given equivalence class, say 
{a, c, h, j}, have different sets of alters, these alters have the same 
attribute values E(k) (in this case they are all “1”s and “2”s). In short, 
the friends of equivalent actors belong to the same clubs. 

Note that for an undirected graph there is only one way a point may 
be related to another; for such graphs the check in condition (i) is 
unnecessary. This reduces the algorithm to checking simply that the set 
of alters of one actor contains the same set of attributes as the set of 
alters of the other actor, where the categorical attribute is merely the 
equivalence class found in the previous iteration. 

Table 1 

List of alters and equivalence classes for Figure 6 

Actor 

a 

Alters 

cbd 

E(k) 

122 
UC e 113 

abd 122 

ac e 113 

bdf 223 

gif 223 

hj f 113 

.igi 122 

hj f 113 

hgi 122 
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We now give a preliminary description of the REGE/A procedure: 

REGE/A, version 1: 
For all i, j, k, m E V, i and j are equivalent at iteration t + 1 it for 
all k related to i there exists an m such that 
(i) R*(i, k) = R*(j, m) 
(ii) E,(k) = E,(m) 
(iii) Ah(i) = Ah( j) for all h E H. 

The “H” in condition (iii) refers to a set of general point attributes, 
such as centrality or degree. Ah(i) is the value held by actor i on 
attribute h. It is important to note that condition (iii) implies 

A,(k) =Ah(m) for all h E H 

on the second iteration. This says that i and j are equivalent if and 
only if they are equally related to the same kind of alters, where “same 
kind” is defined as having equal values on any number of user-speci- 
fied attributes. This is because on the second iteration condition (ii) 
would require that a pair of possible equivalent actors have equivalent 
alters, that is alters who on the previous iteration were equal on all 
attributes. 

The importance of this is that to compute the maximal regular 
equivalence that simultaneously preserved some attribute, one could 
not simply run standard REGE and subdivide the resulting blocks by 
the desired attribute. This fails because the resulting partitions need not 
be regularly equivalent. The undirected graph in Figure 7 is an obvious 
example. Let centrality be our only point-attribute. The sets of actors 
with equal centrality are: 

Group 1: (I) 
Group 2: (2) 
Group 3: (5) 
Group 4: (3 4 6 7) 

Fig. I. 
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Subdividing REGE’s partition (the complete partition) by the sets of 
equal centrality yields those same sets, but this partition is not a regular 
equivalence since not every actor in group 4 is connected to a member 
of group 3, as required by the definition. 

It should be clear that there is no fundamental difference between 
the attribute in condition (ii), and an attribute of condition (iii). In fact, 
in a later section we will suggest that a useful choice of attributes is an 
equivalence classification generated by a competing measure of role. 

It should also be clear that by describing the attributes in condition 
(iii) in the form that we have, we force any computer program imple- 
menting REGE/A to implicitly compute a boolean similarity matrix 
whose cells contain TRUE if the pair of actors in question have the 
same values for all attributes, and FALSE otherwise. For computa- 
tional convenience, we could directly enter a similarity matrix S 
instead of a two-mode rectangular attribute matrix. In our previous 
notation, 

S(i, j) is TRUE if Ah(i) =Ah(j) for all h E H. 

Further, we could enter more than one of these, requiring that alters be 
similar on each similarity matrix. We rewrite the algorithm again as 
follows: 

REGE/A, version lb: 

For all i, j, k, m E V, i and j are equivalent at iteration t + 1 if for 
all k related to i there exists an m such that 
(i) R*(i, k) = R*( j, m) 

(ii) E,(k) = E,(m) 

(iii) S,( i, j) = TRUE for all q E Q, 

where Q is a set of actor-by-actor similarity matrices. We will refer to 
any S( i, j) in Q as a “point-similarity matrix”. 

Obviously, we can use REGE/A to find the maximal regular equiv- 
alence that preserves any point-attribute we choose. Examples of 
point-attributes might be network-theoretic, such as centrality and 
degree, or background information, such as age or occupation. 

This puts an interesting light on Doreian’s (1987) method of using 
REGE to generate a non-trivial equivalence on symmetric matrices. 
Essentially, he proposes splitting a symmetric relation into two asym- 
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metric ones, and submitting these to REGE. The splitting criterion is 
simply that if CENTRALITY(i) > CENTRALITY(j) then RELA- 
TIONl( i, j) = 1, else RELATION2( i, j) = 1. Doreian shows that this 
splitting operation preserves regular equivalence, and the result is the 
maximal regular equivalence that preserves centrality. Often, this will 
be a non-trivial equivalence (although it is possible for a graph with a 
high degree of structure to still only contain trivial partitions). How- 
ever, using REGE/A, we are able to input the original relation unmod- 
ified, using point-centrality as our attribute. This also must result in the 
maximal regular equivalence that preserves centrality, and has the 
advantage of keeping attributes and relations apart. 

An interesting attribute to take is “actor’s name” or “actor’s id 
number”. This yields a partition where two actors are equivalent if and 
only if they are connected to all the same people: in short, it computes 
a form of structural equivalence. 

An example of a more complex set of attributes is found in the 
computation of a very important member of the lattice: automorphic 
equivalence. Maximal sets of automorphically equivalent vertices are 
called orbits. While no polynomial-time algorithm is known to solve 
the automorphism problem exactly, Everett and Borgatti (1988) de- 
scribe an approximate method based upon comparing successively wide 
neighborhoods of actors on several “difficult” attributes. The method is 
guaranteed to partition vertices in such a way that the orbit partition 
must either be equal to the algorithm’s partition or be a refinement of 
it. However, when it does fail to produce orbits, the partition obtained 
will not have any specifiable properties; it may not, for example, 
necessarily conform to regular equivalence. 

However, by taking the partition generated by the orbit algorithm as 
the attribute in REGE/A, we can use REGE/A to find the maximal 
regular equivalence preserving that structure. This ensures that we work 
from a model with known and desirable properties. 

Similarly, the result of any equivalence-finding algorithm can be 
“regularized” simply by submitting to REGE/A both the data matrix 
(as the primary relation) and the current equivalence matrix (as the 
point-similarity matrix). 

An interesting application of REGE/A is to test an a priori parti- 
tion. For example, suppose a biologist records interactions between 
members of a small colony of organisms. He builds up a model of how 
many types of members there are and which individual represents what 
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type. For example, he might hypothesize four types: workers, guards, 
nurses and queens. The question is, does this partition fit our rigorously 
defined notion of role, namely regular equivalence? The test is easily 
performed by entering the hypothesized partition as the point-similar- 
ity attribute (simply a nominal code indicating which partition each 
actor is in). The result will be the maximal regular equivalence con- 
sistent with that partition. If that equivalence is identical to the 
hypothesized partition, then the latter is regular and can legitimately be 
regarded as a role-model. If it is not, in which case the output 
equivalence is a refinement of the hypothesis, then a new model is 
called for. 

The latter case is useful in its own right. Rather than test an 
hypothesis, one may be interested simply in finding the maximal 
regular equivalence that keeps two actors (or two sets of actors) apart. 
For example, one might wonder whether there exists any regular 
equivalence such that actor x occupies a different role from actors y 
and z (who may or may not be playing the same role). This is entered 
simply by an attribute with the following values: 

Actor Attribute 

x 1 

Y 2 

z 2 

REGE/A will split y from z if it needs to, but cannot put x and y or 
x and z together. Obviously, much more complicated role patterns may 
be hypothesized and tested in this manner. 

Extensions 

The standard REGE procedure seeks pairs of actors that are alike in 
having the same kind of alters (a single point-attribute, namely previ- 
ous-iteration equivalence class) and the same kind of relationship to 
them (a set of dyad-attributes, namely the set R). Up to this point, the 
only difference between standard REGE and REGE/A has been that 
the point-based attributes were extended beyond the previous-iteration 
equivalence class to include any point-based attribute(s) the analyst 
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might require. No similar extension of the dyadic attributes was made. 
We now present such an extension: 

REGE/A, version 2: 

For all i, j, k, m E V, i and j are equivalent at iteration t + 1 if for 
all k related to i there exists an m such that 
(i) R*(i, k) = R*( j, m) 
(ii) E,(k) = E,(m) 

(iii) ,S,(i, j) = TRUE for all q E Q 

(iv) D,<i, k) = D,(j, m) for all p E P. 

The “P” in condition (iv) refers to a set of general dyadic attributes, 
such as partial dependencies (Freeman 1979) or geodesic distance. 
D,(i, k) is the value assigned to the relationship between actors i and 
k on the pth dyadic attribute. In short, this says that i and j are 
equivalent if and only if they have the same kinds of relationships with 
the same kinds of alters, where both “kinds of relationships” and 
“kinds of alters” mean equality on specified sets of attributes. 

Of course, it is not absolutely necessary that conditions (i) and (ii) be 
kept separate from (iv) and (iii) respectively. Any dyadic attribute 
included in condition (iv) could just as well appear as a primary 
relation in condition (i). However, for conceptual clarity we keep them 
apart. 

The modified REGE/A algorithm may be used to find blockings of 
actors that are not necessarily regular equivalences. A case in point is 
the role-equivalence proposed by Winship (1974), Mandel (1978), 
Mandel and Winship (1979), and Winship and Mandel (1983), and 
referred to by Mandel as “ Winship-Pattison role equivalence”. The 
following definition is taken from Winship and Mandel: 

Definition. Two individuals are role-equivalent if their role sets 
contain the same role relations. That is, for every role relation 
associated with each individual, there is at least one (and perhaps 
more) identical role relation associated with the other individual. 
(1983: 324) 

As in other work by the “semi-group school” of role modeling (Patti- 
son 1982; Wu 1983; Breiger and Pattison 1986), the approach is based 
on the semigroup of relations arising from composition of the measured 
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J 

Fig. 8. 

relations. The term “role relation” in their terminology is a vector of 
ones and zero indicating whether an actor has a particular compound 
relation with a given other. In a network of n actors, each actor has n 
role relations (including the one with himself). An actor’s “role set” 
(sometimes called “role plane”) is merely his collection of n role 
relations (technically, it is the set of non-identical role relations, but the 
distinction is irrelevant in this context); hence, it is an n x n matrix. 
Since each actor has a role set, there are n of these matrices stacked 
one on top of the other. In Figure 8, the role sets are represented by 
horizontal slices or planes through the “relation box”. Vertical slices 
are adjacency matrices for each relation in the semigroup. 

Let us label the vertical dimension of the box with “I”, the horizon- 
tal dimension with “J” and the depth dimension with “K “. Slices 
parallel to the k7 face of the box are role sets. Each column J of the 
ith KJ slice is a vector of ones and zeros representing the role relation 
of the i th actor with the j th actor. 

According to the definition, two actors are role equivalent if every 
distinct role relation that one has the other has also, but not necessarily 
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with the same alter, and not necessarily in the same quantity. Formally, 
we might put in this way: 

For all i, j, k, m E V, i and j are role-equivalent if for all k there 
exists an m such that 

Role Relation( i, k) = Role Relation( j, m) 

Consider now what happens if we assign a unique code, such as a letter 
or a color to every distinct role relation. In effect, this collapses the 
relation box across the K-dimension, as illustrated in Figure 9. The net 
result is an actor-by-actor matrix whose cells are categorical labels 
representing the set of relationships obtaining between each actor and 
every other. Obviously, this matrix can be entered as the dyadic 
attribute matrix in REGE/A, where the relation in condition (i) is the 
complete graph. Alternatively, the collapsed matrix may be entered 
directly in condition (i) as a valued (but categorical) relation. 2 Finally, 
we need not collapse the relation box at all, but just enter each IJ slice 
as an additional binary primary relation. The one thing we must do, 
however, to duplicate Winship and Mandel, is to employ just one 
iteration. While Winship and Mandel require that equivalent actors 
have the same relations with others, they do not require that those 
others be equivalent, which is the sole function of the REGE iterations. 

Note, however, that by allowing multiple iterations we can “regu- 
larize” the Winship and Mandel equivalence. That is, we can find the 

* Such a matrix cannot be processed by all REGE routines. One routine that will handle it is the 

GQ procedure in the AL computer package (Borgatti 1987). 
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maximal regular equivalence consistent with the Winship and Mandel 
equivalence. 

Computer implementation 

Earlier we cited conceptual clarity as the reason for keeping the four 
conditions of REGE/A separate, but there is another reason as well. 
When we apply concepts such as regular equivalence to empirically 
derived data we often run into a problem: no pair of actors are 
equivalent. A common approach to this problem, and the one taken in 
standard REGE programs, is to provide a measure of the extent of 
equivalence. While no-one would claim that the degrees of equivalence 
produced by REGE are “right” or even particularly interpretable, it 
does make sense to think twice before mixing relations and attributes. 

At the very least we would like to control the relative weight of the 
attributes versus the relations. Further, the logic by which REGE goes 
about determining whether two actors are similarly related across 
multiple relations is not particularly appropriate to a mixture of 
relations and attributes. Briefly, REGE tries to take a kind of weighted 
percentage of the relations that are the same for i and j for a given 
alter. It actually fails but that is incidental here. The question is, should 
we include the attributes with the relations? What if a pair of points are 
similar on a couple of attributes but not on the true relation? The 
percentage of same “relations” would be high so the algorithm would 
find the pair highly equivalent. Yet we could question that result on the 
grounds that the relation is what the regular equivalence should be all 
about: the attributes should merely exist to break apart otherwise 
equivalent actors. Consequently, we have chosen to keep relations and 
attributes separate. 

While we are considering degrees of equivalence, it should be noted 
that until now we have required that attributes match exactly. For 
example, conditions (iii) and (iv) of REGE/A read as follows: 

(iii) S,(i, j) = TRUE for all q E Q 

(iv> o,<i, k) = o,(j, m> for all p E P 

An obvious relaxation is to allow S, to take on values between zero and 
one to indicate the degree of similarity. Similarly, we can evaluate the 
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proportion of dyadic attributes Dp that match, rather than recording 
only whether they all match. These two adjustments have been imple- 
mented in our computer program (Borgatti 1987). 

Discussion 

We have argued that (a) a graph may contain a plurality of regular 
equivalences (forming a lattice), (b) situations exist where the maximal 
regular equivalence is not of interest, and (c) that REGE/A may be 
used to compute alternative regular equivalences. What we have not 
argued is why we restrict our search for alternative equivalences to the 
set of regular equivalences. 

In the broadest possible manner, we can describe regular equivalence 
as the classification of actors by the kinds of relations they have with 
others. The first iteration of REGE, in fact, merely serves to sort the 
vertices into sinks, sources, and “repeaters”. This description also fits 
other non-regular equivalences. The Winship and Mandel approach, for 
example, classifies actors by the sets of compound relations they have 
with others. If actor i has relations R, R*, and R4 with actor b, and 
R2 and R3 with actor c, and actor j has the same sets of relations 
({ R,R*, R4} and {R*, R3}) with actors d and e, then i and j are 
equivalent. Similarly, Breiger and Pattison (1986) compute for each 
actor the semigroup of relations in which ego is involved, and then 
compare the semigroups. 

In short, many models of role equivalence can be characterized as 
classifying actors by the patterns of relations they have with others. 
Where these models principally differ is in the restrictions they place 
(or do not place) on who the actors are having these relations with. For 
example, Winship and Mandel place no restrictions. If actor i has 
role-relation vectors 101 and 219 with alters a and b and actor j has 
the same vectors with alters c and d, then i and j are equivalent 
regardless of the relationship between { CI, b} and { c, d }. Structural 
equivalence on the other hand places the ultimate restriction on the 
alter sets: actors i and j must have the same relations with the Same 
alters. The maximal regular equivalence falls between Winship/Mandel 
and structural equivalences in restrictiveness: it requires that i and j 
have the same relations to the same types of alters. Completing the 
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running example, i and j are equivalent if R( i, a ) matches R( j, c), 
R(i, b) matches R(j, d), and E(a) = E(c) and E(b) = E(d). The 
minimal regular equivalence that does not require the same alters is 
automorphic equivalence. 

The notion of social role as developed by Linton (1936), Nadel 
(1957), and Merton (1959) requires both the condition of similarity of 
relationships, and the restriction on what alters the relationships are 
with. Linton, for example, focused on reciprocal relations between 
groups of actors: 

. . . the functioning of societies depends upon the presence of pat- 
terns for reciprocal behavior between . . . groups of individuals. 
(1936: 113-114) 

All of these theorists understand social structure as emerging from 
relations between classes of people rather than individuals. For exam- 
ple, Nadel, quoting Parsons in part, states: 

We arrive at the structure of a society though abstracting from the 
concrete population and its behavior the pattern or network (or 
‘system’) of relationships obtaining ‘between actors in their capacity 
of playing roles relative to one another’. (1957: 12) 

Thus a model of role must require that actors have similar sets of 
relations with players of other roles, and this implies regular equiv- 
alence since in the homomorphic model representing the sets of regu- 
larly equivalent actors and the relationship between them, all the actors 
associated with one image will have the same relations with a member 
of a second image. This is not the case in the Winship and Mandel or 
Breiger and Pattison approach, and therefore we exclude “ un-regu- 
larized” versions of such models from the list of candidates. And since 
we do not want to require that people must know all and only the same 
people to play the same role, we also exclude structural equivalence, 
except in the sense that any actors that happen to be structurally 
equivalent must certainly be playing the same role. This restricts the set 
of proper models of social role to the set of regular equivalences from 
automorphic equivalence up to the maximal element of the lattice. 
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