
Social Networks 15 (1993) 361-376

North-Holland

361

Two algorithms for computing
regular equivalence

Stephen P. Borgatti
University of South Carolina, Columbia, SC, USA

Martin G. Everett
School of Mathematics, Statistics and Computing, Thames Polytechnic, London, SE18 6PF, UK

In this paper we present two algorithms for computing the extent of regular equivalence among

pairs of nodes in a network. The first algorithm, REGE, is well known, but has not previously

been described in the literature. The second algorithm, CATREGE, is new. Whereas REGE is

applicable to quantitative data, CATREGE is used for categorical data. For binary data, either

algorithm may be used, though the CATREGE algorithm is significantly faster and its output

similarity coefficients have better metric properties. The CATREGE algorithm is also useful

pedagogically, because it is easier to grasp.

1. Introduction

White and Reitz (1983) introduced regular equivalence as a formal
model of the sociological notion of role. Regular equivalence repre-
sents a significant advance over structural equivalence (Lorrain and
White 1971) in capturing key features of the relational role concept
(Nadel 1957, Merton 1959). White and Reitz define regular equiva-
lence for single-relation networks as follows:

Definition 1. If G = <P, R > and = is an equivalence relation on P
then = is a regular equivalence if and only if for all a, b, c E P,
a = b implies:
(i) aRc implies there exists d E P such that bRd and d = c; and
(ii) cRa implies there exists d E P such that dRb and d = c.

Correspondence to: S.P. Borgatti, Department of Sociology, University of South Carolina,

Columbia, SC 29208, USA.

037%8733/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved

362 S.P. Borgatti and MC. Everett / Two algorithms

-4 a b C

Fig. 1.

a-d a-d

X b C b-c

I?1 R2

Fig. 2.

Regular equivalence may be understood as a partition of nodes into
classes such that nodes of the same class are surrounded by the same
classes of nodes. Figure 1 demonstrates a two-class regular equiva-
lence. In the figure, the nodes {b, c, e) form one equivalence class and
{a, d} form the other. Each node in the first class is connected to both
a member of its own class, and a member of the other class. In
contrast, each node in the second class is connected only to a member
of the first class, not to a member of its own class. Thus, each class is
homogeneous with respect to the kinds of nodes that its members are
adjacent to. In this sense, the definition requires that equivalent
actors 1 have equivalent sets of alters.

A graph may contain several distinct regular equivalences, and the
set of all regular equivalences of a graph forms a lattice (Borgatti and
Everett 1989). The supremum element of the lattice is known as the
maximal regular equivalence or MRE. For undirected graphs with no
isolates, the MRE is trivial and rarely used since the only equivalence
class is the set of all nodes. In contrast, for directed graphs, the MRE
is typically the most useful equivalence. Other well-known regular
equivalences include automorphic equivalence (Everett 1985) and
structural equivalence (Lorrain and White 1971).

I We use the terms ‘actors’, ‘alter’, ‘node’ and ‘point’ synonymously, but not interchangeably.

Node and point are used in the context of abstract graphs, while actor is used in the context of
concrete social networks. Alter refers to a node adjacent to a previously referenced node.

S.P. Borgatti and M.G. Everett / Two algorithms 363

For networks composed of multiple relations, White and Reitz
offer several approaches. The simplest approach (RE) requires only
that the equivalence be regular across every relation in the network.
Thus, for the network in Fig. 2, the partition {{a, b}, {c, d)} forms a
regular equivalence on each relation. Another approach suggested by
White and Reitz (see also Everett and Borgatti 19921, which we shall
refer to as a multiplex regular equivalence (MPXRE), * requires that
equivalent actors have the same ‘bundle’ of relations with equivalent
others. In other words, if node a has an outgoing arc with node c on
relations 2 and 7 in a lo-relation network, then any node equivalent to
a must have an alter equivalent to c with whom it is connected on
those (and only those) two relations. Both the RE and MPXRE
definitions yield a lattice of valid equivalences for any given graph,
and all elements of the MPXRE lattice are also elements of the RE
lattice.

For the graph in Fig. 2, the maximal MPXRE is the identity
partition in which each node is in an equivalence class by itself. To see
why, consider that node a is the only one that has an outgoing arc to
an alter (d) on both relations. Likewise, b is the only node that has an
outgoing arc to an alter Cc) only on the second relation. Thus, a and b
are not MPXRE equivalent, and therefore c and d are not equivalent
either.

From a computational point of view, the two regular equivalence
definitions are functions that take data relations (i.e. a network) as
input and return sets of partitions (or equivalences) as output. We
denote the application of the functions to a set of data consisting of
relations Ri (1 <i sp) by RE(R,, R, ..,, RP> and MPXRE(R,,
R *. . . , R,), respectively. Note that MPXRE(R,, R,. . . , RJ c RE
CR,, R,. . . , RJ. Furthermore, the MPXRE function applied to a set
of relations is equivalent to the RE function applied to the same set of
relations plus their intersections. For example, MPXRE(R,, R,, R,)
= RE(R,, R,, R,,R,nR,, R,nR,,R,nR,, R,nR,,R, nR,n
R,).

Of special interest is the case where R, is any relation R and R, is
the inverse R-l. Obviously, RE(R) = RE(R, R-l), since regular
equivalence takes both incoming and outgoing ties into account.

’ Multiplex Regular Equivalence is another name for the ‘bundle equivalence’ that White and

Reitz (1983: 208) introduce. We do not use their term because in the same article (214) they use

‘bundle equivalence’ to refer to the distinctly different work of Mandel and Winship (1979).

364 S.P. Borgatti and M.G. Euerett / Two algorithms

a-c-e

X b-d-f

Fig. 3

However, MPXRE(R) # MPXRE(R, R-l). The equivalences gener-
ated by MPXRE(R, R-l) have the following very useful property: if
two actors are equivalent, they must have the same combination of
incoming and outgoing arcs with equivalent alters. This is readily
understood by considering the case where R, is not the inverse of R,.
For example, if we consider the ‘works with’ and ‘lends money to’
relations and suppose that actors c, d, and e have been found
equivalent, and actor a who both lends money and works with an
actor c will not be considered equivalent to an actor who lends money
to (but does not work with) d even if she works with (but does not
lend money to) e. In other words, lending money to a coworker is
considered a unique social relation that affects one differently from
the experience of lending money to non-coworkers and from the
experience of working with someone who is not indebted to you. Thus,
returning to the case of MPXRE(R, Rp ‘1, all equivalences generated
by this function will have the property that a reciprocated relationship
between two nodes will be treated differently from separate outgoing
and incoming links.

2. The REGE algorithm

The REGE algorithm is the result of efforts of a group of University
of California, Irvine researchers, including Lee Sailer, John P. Boyd,
Douglas R. White and Karl Reitz. The essential points of the algo-
rithm were presented by D.R. White in three unpublished papers
(1980, 1982, 1984). The earliest computer implementation known to
the present authors is a FORTRAN program from 1985 by D.R.
White. This was translated into BASIC by L.C. Freeman (1985) as
part of the UCINET 2.0 computer package, and rewritten in BASIC
by Bruce MacEvoy and L.C. Freeman (1987) as part of the UCINET
3.0 package. More recently, the program has been translated into
PASCAL as part of the UCINET IV package (Borgatti et al. 1992a).

S. P. Borgatti and M. C. Everett / Two algorithms 365

a-c-e x b-d-f

Fig. 4.

While simple in many respects, there are certain aspects of REGE’s
operation that are not altogether clear. For example, many practition-
ers (including ourselves) have assumed that REGE locates that MRE.
However, this is not the case, as the graph in Fig. 3 illustrates. For
that graph, the REGE algorithm identifies the following partition:
{{a b} {c d} (e ff}. Yet the MRE partition is ({a b c d efl) (all nodes
equivalent) since the graph contains no sinks or sources (Borgatti and
Everett 1989). 3 Based on the pattern of arcs in the graph one might
surmise that REGE distinguishes actors who have both incoming and
outgoing links with a single alter from actors who have outgoing links
with one set of alters and, separately, incoming links with another set
of alters. Such a distinction would mean that REGE was computing
the maximal MPXRE(R, R-l), which would be quite sensible and
desirable. However, this is also not the case, as illustrated by the
graph in Fig. 4. Here, REGE returns the complete partition
{{a, b, c, d, e, f}}, despite the fact that e and f are the only nodes with
unreciprocated arcs, making {{a, b), {c, d}, {e, f)) the maximal
MPXRE(R, R-l).

REGE is an iterative algorithm that yields a measure eij of the
extent of equivalence (i.e. role simiiari~) of all pairs of nodes i and j.
It begins by setting eij = 1.0 for all pairs of nodes. With each succeed-
ing iteration, it recomputes eij for all pairs based on the degree to
which i’s alters correspond to j’s alters.

For the first iteration, eij is calculated by counting up the extent to
which i’s ties to her alters correspond to j’s ties to his alters (and vice
versa), and dividing by the total possible. Both the numerator and
denominator are influenced by the sheer number of alters each actor
has. The extent of correspondence is computed on a point system as
follows. Consider the disconnected graph in Fig. 5. The neighborhood

3 A source is a node with outdegree, but no indegree. A sink is a node with indegree, but no
outdegree. For a fuller discussion of the importance of sinks and sources for regular equivalence,
see Borgatti and Everett (1989).

366 SP. Borgatti and M.G. Everett / Two algorithms

Fig. 5.

(or ‘set of alters’, which we denote by N) of node a is N(a) = (b, c, d}.
Note that the link with b is outgoing only, the link with c is incoming
only, and the link with d is both incoming and outgoing. The neigh-
borhood of node e is N(e) = {f, g}. Node f constitutes an outgoing
link for e whereas g gives an incoming link. Suppose we are comput-
ing the extent of equivalence between nodes a and e. The algorithm
begins by seeking elements in e’s neighborhood that match a’s. Since
the relationship (an outgoing tie) between a and b is matched by the
relationship between e and f, a point is scored. Similarly, a’s relation-
ship with c is matched by e’s relationship with g in N(e), which
scores another equivalence point.

Next we consider alter d in N(u), which constitutes both an
incoming and an outgoing link for a. There are several ways an
algorithm could handle this situation. One possibility is to let d match
only an alter in N(e) which is both an incoming and an outgoing link.
This choice yields the MPXRE partition (see Table 1). In this exam-
ple, this would mean that d has no match in N(e), and therefore the
extent of equivalence between a and e at this stage in the computa-
tion is 2/3.

Another possibility is to treat alters such as d as wildcards which
match any kind of alter, since they represents both incoming and
outgoing arcs. This choice yields the RE partition (see Table 2). In the

Table 1
MPXRE(R, R-‘) point system for evaluating equivalence between actors a and e

Alter j

e+j e+j e-j

Alter i a-+i 1 0 0
a+i 0 1 0
a-i 0 0 1

S.P. Borgatti and M.G. Everett / Two algorithms 367

Table 2

RE point system for evaluating equivalence between actors a and e

Alter j

a-j e+j e-j

Alter i a-i 1 0 1
a-i 0 1 1

awi 1 1 1

Table 3

REGE point system for evaluating equivalence between actors a and e

Alter j

e-j e+-j e-j

Alter i a-i 1 0 1

a+i 0 1 1

ac*i 1 1 2

example, d would them match either f or g in N(e), for a (partial)
similarity score of 3/3.

REGE, however, chooses neither alternative. Instead, REGE im-
plements a kind of compromise (Table 3). It allows the d to match any
alter in N(e), as in the wildcard approach, but if N(e) contains a
better match for d (an alter that was both an incoming and outgoing
link), the match scores 2 points (one for each direction). In effect,
REGE counts the number of links matched rather than the number of
alters. The results is an equivalence that is neither MRE nor MPXRE
in general, but can be either on occasion.

Once it has counted matches from one node’s point of view, REGE
repeats the process from the other node’s point of view. In the
example, it would start with f and seek a match in N(a). Since b (or
d) matches, a point is scored. Then it seeks a match for g. This time c
(or d) matche s, and another point is scored. Points from both nodes of
view are summed and the result divided by the maximum possible. For
this example, REGE(R) would compute:

(1+ 1+ 1) + (1 + 1)

(1 + 1+ 2) + (1 + 1) = 5’6

368 S.P. Borgatti and M.G. Everett / Two algorithms

In contrast, an RE(R) algorithm would compute:

(1 + 1+ 1) + (1+ 1)

(1 + 1 + 1) + (1+ 1) = 5’5 = 1

and an MPXRE(R, R-‘) algorithm would compute

(1 + 1 + 0) + (1 + 1)

(1 + 1 + 1) + (1 + 1) = 4’5

which, in this particular case, resembles the REGE result.
On the second, iteration, matching occurs the same way, but now

the points counts are weighted by the previous iteration’s equivalence
between the matched alters. For example, when matching a’s b with
e’s f, we multiply the points from the match (totalling 1) by the extent
of equivalence between b and f computed in the previous iteration.
Since that number must be 1 or less, the outcome of the multiplication
is less than or equal to one. Thus the terms in the numerator get
knocked down with each iteration, but the terms in the denominator
do not. Hence the equivalence scores for each iteration diminish (for
non-equivalent pairs) with each iteration. 4

How, then, do we interpret the similarity scores at the end of k
iterations? Tracing the results of each iteration for simple graphs
reveals that the first iteration assigns zero similarity to all pairs of
nodes involving just one isolate, 5 and assigns low similarity to all pairs
of nodes in which just one node is a sink or a source. The next
iteration further reduces the similarity of pairs containing sinks and
sources, and begins reducing the similarity of pairs in which one
node’s neighborhood contains a source or sink and the other does not.

The net result of the process is to progressively reduce the similar-
ity between pairs based on the distance that each of the two nodes is
from every sink and source in the graph.

Pairs of nodes that have a different distribution of distances from
each sink and source will be assigned progressively smaller similarity.

4 The rate of attenuation is not a constant, nor is it the same for different pairs of nodes.

5 Most implementations artificially assign perfect similarity to pairs in which both actors are

isolates.

S.P. Borgatti and M.G. Everett / Two algon’thms 369

d?’ ’
b-i’ C

f

Fig. 6. Graph with REGE partition {{a), {b, c}, {d, e, f)}.

Table 4

REGE output (3 iterations) based on graph in Fig. 6

a
b
:

a b c d e f
100 40 34 0 0 0

40 100 100 25 25 23

34 0 100 25 100 33 100 33 100 33 100 31

0 2.5 33 100 100 100

0 23 31 100 100 100

The actual quantities, however, will depend upon the number of alters
in each nodes’s neighborhood, and on the proportion of bidirectional
links they have. These dependencies make similarity values which are
not 1 or 0 difficult to interpret with precision. Further, it is known
that the values between iterations for any given dataset need not be
highly correlated, even at the rank-order level. 6

Another problem concerns the metric properties of REGE’s mea-
sure of the extent of equivalence. The graph in Fig. 6 has REGE
equivalence classes {a), {b, c}, {d, e, f}. The matrix of similarity mea-
sures is given in Table 4. Consider the extent of equivalence between
node a in the first class and nodes b and c in the second. Nodes b
and c are perfectly equivalent, yet they are not equally equivalent to
a. Thus, REGE’s measure of similarity is not (isomorphic with) a
distance metric. REGE’s metric properties can fail whenever other-
wise equivalent nodes have different degree. Since regular equiva-
lence as a mathematical concept is insensitive to degree, this repre-
sents a serious gap between the ideal type and the algorithmic
instantiation.

6 It is customary to stop the program after three iterations, but this arbitrary.

370 S.P. Borgatti and M.G. Everett / Two algorithms

3. The CATREGE algorithm

In this section we present an alternative algorithm (see Fig. 7) for
computing the maximal MPXRE(R, R-l). Just as the REGE algo-
rithm is easily modified to yield an RE or MPXRE solution, so is the
CATREGE algorithm. Since we have chosen the MPXRE(R, R-l),
however, we have been able to introduce certain computational effi-
ciencies. For example, the presence of R-’ in the data obviates the
need for the second (or ‘indegree’) condition of Definition 1. Hence,
the CATREGE algorithm performs only the first (or ‘outdegree’)
check.

The algorithm takes a multiplex matrix (White and Reitz 1983: 208;
Borgatti et al. 1992b: 55) as input. The values of a multiplex matrix X
are categorical codes that index each unique combination of input
relations (and their inverses) that connect each pair of nodes. For
example, if the data consist of a single directed relation, the possible
values of xii are 1 (if iRj but not jRi), 2 (if jRi but not iRj), 3 (if iRj
and jRi) and 0 (if not iRj and not jRi). An algorithm for computing X
from a collection of one or more input relations is given in Fig. 8.

Given a multiplex matrix (or any other categorically valued matrix),
the CATREGE algorithm explodes the input data into as many binary
relations are there are distinct values, such that (i, j) E R, iff xii = k.
Then for each of these derived relations, the algorithm iteratively
verifies that pairs of nodes that were equivalent in the previous
iteration have the same types (classes) of nodes in their neighbor-
hoods. If so, the nodes remain equivalent; if not, they are marked as
non-equivalent and are not considered in subsequent iterations.

All nodes are assumed equivalent prior to the first iteration. It is
this assumption that selects the maximal regular equivalence consis-
tent with the input relations. It is important to note, however, that
other regular equivalences may be selected by choosing different
starting assumptions. For example, to compute the most inclusive
regular equivalence that is also consistent with a given node-attribute
(e.g. centrality), we would first partition nodes by that attribute (i.e.
two nodes are in the same class if they have the same score on the
attribute of interest) and use that as the starting partition. This is
useful if the equivalence classes one seeks need to be homogeneous
with respect to a particular attribute in order to be theoretically
useful. An example might be the case where regular equivalence is

S.P. Borgutti and MC. Everett / Two algorithms 371

Const
m0xn = 255; Cmaximm n&m-
maxr = 10; clsaximll nunber

Type
bytevector = arrayll. .maxnl of
byteset = set of byte;
matrix = arrayll . .maxnl of

of nodes1
of distinct retational txmdles~

byte;

bytevector;

Procedure CAfREGEfvar Irpxmatrix; n,r:byte);
c mpx is input categoricatly valued matrix)
c p is output matrix of partitions, one per rot4 1
c n is the n&m- of nodes; r is the nuaber of distinct bundles >
Var

it,i,j: integer;
changes: boolean;
partl,part2: bytevector;

arraytl . .maxr, 1. .maxnl of byteset;

Procedure ComputeNeighborhoods;
Var

i,j,q: byte;
Begin

for q:= 1 to r do for i:= 1 to n do nbtq,il:= [I;
for i:= 1 to n do for j:= 1 to n do begin

q:= npxEi,jl;
if q > 0 then nbCq,il:= nblq,il + @art1 Cjll;
end;

End;

Function Same(i,j: byte): boolean;
Var

q: byte;
Begin

same:= fetse;
for q:= 1 to r do if nbEq,il 0 nblq. jl then exit;
same:= true;

End;

Begin < catrege 1
it:= o-
for i:: 1 to n do partltil:= 1;
repeat

computeneighborhoods; inctit);
p[itl:= partl;
changes:= false:
for i := 1 to n do part2Cil:= i;
for i:= 2 to n do for j:= 1 to i-l do

if partltil = partltjl then if same(i,j)
theh part2lil:= part2Cjl
else changes:= true;

partl:= part2;
until not changes;

End;

Fig. 7. CATREGE algorithm for computing MPXRECR, R-l). Assumes multiplex matrix as
input.

372 S.P. Borgatti and M.G. Ecerett / Two algorithms

Procedure Uultiplex(var f:file; var apxmatrix; var buns:byte; n,r:byte>
C f is input file; spx is output multiptex matrix; 1
< bww is nmber of distinct bundles of relations; 1
C n is w&r of nodes; r is nunber of relations in file f;)
const

msxbuns = 255;
Var

q,i,j: byte;
data: matrix;
list: arraytO. .255,1. -31 of byte;

Function GetHPXCodaUnx,dx,dy:uord): uord;
Var

i: uord;
Begin

for i:=O tolnmsdo
if (list~i,llwnx) and (list[i,2l=dx) and (listli,31=dy)

than begin getnpxcode:= i; exit; end;
inc(buns); listtbms,l]:= mx; listtbuns,21:= dx; listtbuns,31:= dy;
getnpxcode:= buns;

EM;

Begin
for i:= 1 to 3 do listIO.il:= 0: {ensure that null relation is coded 01
for i:= 1 to n do for j:i 1 to h do Rpxti,jl:= 0;
for q:= 1 to r do begin {process each relation in file)

for i:= I to II do for j:= 1 to n do read(f,dataCi,jl);
buns:= 0;
for i:= 1 to n do for j:= f to n do

rrpxli,jl:= get~xc~e(~ti,jl,data~i,j~,dataCj,il);
end;

End;

Fig. 8. Algorithm for generating a multiplex matrix from one or more input relations.

used to identify social positions in a network, and it would not make
sense that two actors occupying the same position could have different
amounts of centrality. In essence, the starting partition can be used to
constrain the solutions. For more discussion on this aspect, see Bor-
gatti and Everett (1989).

Table 5
CATREGE hierarchical clustering of the graph in Fig. 9.

Level abcdefghi
_--MC _ _ _ _ _ _ _ _ _

5
4 . . . FFFFF . . .
3 . . GGGGGGGGG . .
2 . HHHHHHHHHHHHH .
1 11111111111111111

S.P. Borgatti and M.G. Everett / Two algorithms 373

Table 6
CATREGE similarities based on the graph in Fig. 9.

a b C d e f g h i

a
b

1 1 1
5 2 2
2 5 3
2 3 5
2 3 4
2 3 4
2 3 3
2 2 2
1 1 1

1 1 1
2 2 2
3 3 3
4 4 3
5 4 3
4 5 3
3 3 5
2 2 2
1 1 1

The output of CATREGE is a collection of hierarchically nested
partitions. In all cases, the first partition has all nodes in the same
equivalence class (unless a different starting partition was used).
Succeeding partitions break up the classes of the previous partition
into smaller classes whose members are ‘more’ equivalent. The classes
of the last partition contain only nodes which are perfectly regularly
equivalent (in many cases, the final classes will be singletons, each
containing a single node). This hierarchical set of partitions can be
displayed as a cluster diagram, as shown in Table 5.

A natural measure of the extent of regular equivalence between a
pair of modes is given by the number of iterations needed to split
them into separate classes. If they are split after the first iteration, it
means that they have grossly different relational patterns, since the
first iteration essentially splits up the nodes according to whether they
are sinks, sources, or repeaters. If they are split only after the second
iteration, it means that they are the same basic type (i.e. sink, source
or repeater) but their immediate neighborhoods do not contain the
same combinations of sinks, sources and repeaters. If two nodes are
never split apart, then they are perfectly equivalent. A normalized
measure varying between 0 and 1 can be obtained by dividing by the
total number of iterations. Table 6 gives the similarities obtained from
running the algorithm on the graph shown in Fig. 9.

Note that, in contrast to REGE, this measure of similarity is not

a-b-c-d-e-f-g-h-l

Fig. 9.

374 S.P. Borgatti and M.G. Everett / Two algorithms

affected by the degree of nodes, nor does it yield inconsistent results
(e.g. in the graph in Fig. 6, the similarity of a to b is the same as from
a to c, unlike REGE’s results). Furthermore, the similarity coeffi-
cients are clearly defined.

Another advantage of this algorithm is its speed. Whereas REGE
runs in time proportional to n5, CATREGE runs in time proportional
n3. This allows very large networks to be processed in the same
amount of time required for a single matrix multiplication. Associated
with its speed is its simplicity. The algorithm is easy to comprehend
and therefore valuable pedagogically.

4. Summary

Most graphs possess several regular equivalences, which form a lat-
tice. The well-known REGE algorithm finds one of them, but it is not
always clear which one. It is neither the maximal regular equivalence
(MRE) nor the multiplex regular equivalence (MPXRE), though it
may coincide with either. Analysis of the algorithm reveals that the
uncertainty is due to the implicit point system which assigns varying
points to different degrees of correspondence between actors’ rela-
tionships. The point system is such that idiosyncracies of the data
(such as unequal degree and unequal numbers of reciprocated rela-
tionships) can influence which equivalence is selected from the lattice.
This is also the source of another problem, which is that equivalent
nodes need not be equally equivalent to other nodes. These problems
can be corrected by adjusting the point system, as shown in Tables 3
and 4. However, the resulting similarity measures (at each iteration)
remain difficult to interpret, and the user must still arbitrarily choose
which iteration to accept.

The CATREGE algorithm, in contrast, produces a single, simpler
measure of similarity, without requiring an arbitrary choice of itera-
tions. The algorithm is also orders of magnitude faster. An important
limitation, however, is that CATREGE cannot properly be used with
quantitative data: it treats all data values as categorical. Thus, for data
is which the strength of relationships among actors has been collected,
the REGE algorithm is more appropriate. 7

’ The reader may also wish to consult the REGD algorithm described by Reitz and White
(1989).

S.P. Borgatti and M. G. Everett / Two algorithms 375

One problem suffered by both REGE and CATREGE is the lack
of a theoretical rationale for the measure of similarity produced.
While CATREGE’s measure is simpler and clearer than REGE’s, it
cannot be claimed to be any more valid (assuming we make the
corrections in REGE discussed above), because validity would imply a
correspondence between the measure and well-defined theoretical
definition of the extent of regular equivalence between two nodes. But
such a definition does not exist: all we have is definitions of perfect
regular equivalence. In this sense, the blockmodeling approaches to
computing regular equivalence of Batagelj et al. (1992) and Borgatti
and Everett (1992) are superior, because they do not require a
definition of the ‘regular similarity’ of pairs of nodes. The weakness of
the blockmodeling approaches, however, is that, given the current
state of development of combinatorial optimization techniques, they
are too slow for many applications. In this sense, the similarity-based
methods like REGE and CATREGE are strong computationally but
weak analytically, while the blockmodeling methods are strong analyti-
cally but weak computationally.

Both REGE and CATREGE are implemented in the UCINET IV
software package (Borgatti et al. 1992a).

References

Batagelj, V., P. Doreian, and A. Ferligoj

1992 “An optimizational approach to regular equivalence.” Social Networks 14: 121-135.

Borgatti, S.P. and M.G. Everett

1989 “The class of all regular equivalences: algebraic structure and computation.” Social
Networks 11: 65-88.

1992 “Regular blockmodels of multiway, multimode matrices.” Social Networks 14: 91-120.

Borgatti, S.P., M.G. Everett, and L.C. Freeman

1992a UCZNET IV Version 1.00. Columbia: Analytic Technologies.

1992b UCINET Iv Reference Manual. Columbia: Analytic Technologies.

Everett, M.G.

1985 “Role similarity and complexity in social networks.” Social Networks 7: 3.53-359.
Everett, M.G. And S.P. Borgatti

1993 “An extension of regular colouring of graphs to digraphs, networks and hypergrapbs.”
Social Networks 15: 237-254.

Freeman, L.C.

1985 UCINET 2.0 Microcomputer Package. Irvine, CA: University of California, School of
Social Sciences.

Lorrain, F. and H.C. White.
1971 “Structural equivalence of individuals in social networks.” Journal of Mathematical

Sociology 1: 67-80.

376 S.P. Borgatti and M.G. Everett / Two algorithms

MacEvoy, B. and L.C. Freeman

1987 UCINET: A Microcomputer Package for Network Analysis. Irvine, CA: University of

California, School of Social Sciences.

Mandel, M.J. and C. Winship

1979 “Roles, positions and networks.” Paper presented to The American Sociological

Association meetings, Boston, MA.

Merton, R.K.

1959 Social Theory and Social Structure. 2nd edition. Glencoe, IL: Free Press.

Nadel, SF.

1957 The Theory of Social Structure. London: Cohen &West.

Reitz, K. and D.R. White

1989 “Rethinking the role concept: homomorphisms on social networks.” In: Freeman,

D.R. White, and A.K. Romney (Editors), Research Methods in Social Networks
Analysis, Fairfax, VA: George Mason University Press, pp. 429-488.

White, D.R.

1980 “Structural equivalences in social networks: concepts and measurement of role struc-

tures.” Paper presented at Research Methods in Social Network Analysis Conference,

Laguna Beach, California, April 1980.

1982 “Measures of global role equivalence in social networks.” Unpublished manuscript.

1984 “REGGE: a REGular Graph Equivalence algorithm for computing role distances
prior to blockmodeling.” Unpublished manuscript.

White, D.R. and K. Reitz

1983 “Graph and semigroup homomorphisms on semigroups of relations.” Social Networks
5: 193-234.

