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A recent study (Hummon and Carley 1992) has indicated that one of the main research paths 

in the discipline of social networks is the study of roles and positions. Several key positional 

concepts have been elucidated, including regular colorings (White and Reitz 19831, automorphic 

colorings (Everett 1985), and structural colorings (Lorrain and White 1971). Regular colorings in 

particular have been seen as formalizations of the intuitive concept of social role. However, in 

this paper we suggest that regular colorings only incorporate one half of the intuitive role 

concept. The other half, which we formalize as ecological colorings, is equally important. We 

therefore introduce perfect colorings, which are both regular and ecological, and are conse- 

quently more complete models of the role concept. Perfect colorings have a number of 

interesting mathematical properties, which we describe briefly. 

1. Role colorings 

Everett and Borgatti (1991) have suggested that a natural way of 
describing positional concepts is in terms of graph colorings. Let 
G(V,E) be a finite connected graph without multiple edges with 
vertex set I/ and edge set E. (All the results can easily be extended to 
disconnected graphs, digraphs and networks.) A role coloring C is an 
assignment of colors to vertices such that the pattern of ties among 
colors follows certain well-defined rules. We denote the color of a 
vertex u by C(U). We refer to vertices colored the same as role 
equiudent. The spectrum C(S) of a subset S of I/ is the set of distinct 
colors assigned to the elements in the S. 

* Corresponding author. 

1 We are grateful to Phillip Bonacich and an anonymous reviewer for several outstanding 
criticisms that have greatly improved our paper. We note that the paper still contains a few 

points on which we disagree. 
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The neighborhood N(u) of a vertex u is the set of vertices adjacent 
to U. Given a graph G with vertex set V and edge set E, an 
automorphism n- of G is a l-l mapping of G onto itself such that 
(a, b) E E iff (rr(u), r(b)) E E. Th e set of all automorphisms of G 
form a group under the operation of composition which we shall 
denote by Aut(G). Two vertices a and b belong to the same orbit of a 
subgroup H of Aut(G) if there exists a rr E H such that ~-(a> = b. 

Definition 1. A coloring C is structural if C(a) = C(b) iff N(a) = N(b). 

Structural colorings were proposed by Lorrain and White (1971) 
and Burt (1976) as models of jointly occupied social positions or 
statuses. The idea is that two vertices that are connected and not 
connected to exactly the same other vertices in the graph, are per- 
fectly substitutable. Hence, any advantages or disadvantages at- 
tributable to being connected to exactly that combination of vertices 
should accrue equally to both vertices. 

Definition 2. A coloring C is automorphic if C(a) = C(b) iff a and b 
belong to the same orbit of a subgroup of Aut(G). 

Automorphic colorings were proposed by Everett (1985) and Win- 
ship (1988). Automorphic colorings form classes of vertices which are 
structurally indistinguishable, but which are not necessarily connected 
to any of the same vertices. 

Definition 3. A coloring C is regular if C(a) = C(b) implies C(N(a)) 
= C(N(b)). 

Regular colorings were proposed by White and Reitz (1983) as 
formalizations of the sociological notion of social role. They can be 
interpreted as requiring that regularly equivalent vertices (i.e. same 
colored) be connected to regularly equivalent vertices. Applied to 
social roles, the idea is that if two actors are both doctors, then they 
have the same kinds of relationships with their respective patients, 
nurses, suppliers, and so on. 

Regular colorings form a lattice which includes both structural and 
automorphic colorings as members (Borgatti and Everett 1989). 
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2. Ecological colorings 

In a recent paper on exchange networks, Borgatti and Everett (1992b) 
introduced the notion of ecological colorings, which they define as 
follows: 

Definition 4. A coloring C is ecological if C( N(a)) = C( N(b)) implies 

au> = C(b). 

A coloring is ecological if a vertex’s color is completely determined 
by the colors of its neighbors. Thus, the definition states that two 
vertices surrounded by the same collections of colors will themselves 
be colored the same. Examples of ecological colorings are given in Fig. 
1 and Fig. 2. An example of a non-ecological coloring is given in 
Fig. 3. 

The appellation ‘ecological’ is meant to suggest a coloring in which 
the environment of a vertex determines something about the vertex. 
We expect ecological colorings to prove useful in formalizing sociolog- 
ical theories in which the environment of an actor is thought to shape 
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that actor. For example, in organizational theory, population ecolo- 
gists (Hannan and Freeman 1977; Aldrich 1979) hypothesize that 
organizational forms are determined, through natural selection and 
adaptation, by their environments, which consist largely of other 
organizational forms. Similarly, in biology, it is commonplace to at- 
tribute features of a species’ morphology to its relations (who eats 
whom, who shares resources with whom) with other species. 

The ecological view is also prevalent in network theories of attitude 
formation (Erickson 1988) and diffusion of innovation (Burt 1987). In 
fact, it is fundamental to all views of contagion (Burt 1992) that are 
based on concepts of spatial autocorrelation (Cliff and Ord 1973). For 
example, Burt (1991) models an actor’s attitude as a linear function of 
the average of the attitudes of those connected to the actor. Thus, two 
actors surrounded by the same combination of attitudes are predicted 
to have the same attitudes as each other. 

One area in which ecological colorings have already proven useful 
is the analysis of power in experimental exchange networks. Borgatti 
and Everett (1992b) used ecological colorings to formalize the intu- 
itive concept that a vertex’s power is a function of the power of its 
neighbors. Defining a power coloring as an assignment of colors to 
vertices such that two vertices are assigned the same color if and only 
if they have the same power, they showed that all experimentally 
observed power colorings were ecological. That is, in all experiments, 
it turns out that if two vertices are surrounded by the same combina- 
tion of powers, they are equally powerful. Borgatti and Everett also 
showed that the theory of Markovsky et al. (1988) always yields 
ecologically consistent predictions. 

Ecological colorings of graphs are similar in spirit to eigenvectors. 
An eigenvector is a vector v that satisfies the following condition: 

ui = A-’ CXijUj 

If X is a symmetric adjacency matrix, then ui is the eigenvector 
score for vertex i. If the adjacency matrix contains only zeros and 
ones, the ui is proportional to the sum of the scores of its neighbors. 
Hence, if two vertices have the same combinations of eigenvector 
scores in their neighborhoods, they will themselves have equal eigen- 
vector scores. In this sense, ecological colorings may be thought of as 
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simple precursors of something which might be called ‘qualitative 
eigenvectors’ ‘. 

In any graph, there may be a number of ecological colorings. These 
can be ordered by the refinement relation < . Any coloring induces a 
partition of the vertices into homogeneous classes with respect to 
color. Given two colorings C, and C, then C, < C, if every element of 
the induced partition of C, is a subset of an element of C,. The 
following theorem demonstrates that the class of all ecological color- 
ings of a graph has a similar structure to the class of regular colorings. 

Theorem 5. The set of all ecological colorings of a graph, ordered by 
the refinement relation, form a lattice. 

Proof. It is sufficient to prove the existence of arbitrary meets. The 
coloring in which every vertex is colored the same is obviously ecologi- 
cal and hence we need only consider the arbitrary meets of a non- 
empty set of ecological colorings. Let C,, . . . , C, be a set of ecological 
colorings for a graph G. Then let C be the coloring in which for any 
pair of vertices a, b we define C such that C(a) = C(b) if and only if 
C,(a)=C,(b) for i= l,..., II. It is well known that this construction 
gives the meet for any family of partitions: we need only show that it is 
ecological. Suppose that C(N(a)) = C(N(b)) so that for every z E N(a) 
there exists some y E N(b) such that C(z) = C(y) and therefore 
Ci(Z> = Ci( y) for every i. Hence Ci(N(a)) c Ci(N(b)). Similarly, 
Cj(N(b)) c C,(N(a)). It follows that 

C,(N(a)) =Ci(N(b)) for i= l,Z,...,n 

Since Cj is ecological for every i then 

C,(a) = C,(b) for i = 1, 2,. . . , n 

hence C(a) = C(b) as required. •I 

’ As both Phillip Bonacich (personal communication) and an anonymous reviewer have cau- 

tioned us, the analogy cannot be pushed too far. An extension of the notion of ecological 
colorings might define the spectrum C(S) of a set of vertices S as an array instead of a set (so 
that a vertex surrounded by two green vertices was different from one surrounded by three green 

vertices), the analogy would be closer. However, that extension is beyond the scope of this paper. 
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The minimal element of the ecological lattice is the ~~~c~~~~~ color- 
ing, in which vertices with identical neighborhoods are assigned the 
same color. 

3. Ecological and regular colorings 

A comparison of Definition 4 with Definition 3 reveals that ecological 
colorings are in a certain sense opposites of regular colorings. Whereas 
in a regular coloring the color of a vertex implies a certain combina- 
tion of colors in its cn~ronment, in an ecological coloring it is the 
colors in the environment which determine the color of the vertex. 

In some ways, the ecological coloring is easier to comprehend as a 
model of social relationships. We can easily imagine a process (e.g. 
attitude formation) by which the kinds of vertices in a particular 
vertex’s neighborhood would tend to shape that vertex into this or that 
kind. Thus we can see the ecological coloring as the end state of an 
influence process. In contrast, a regular coloring is more difficult to 
associate with a social process. If we used the same kind of reasoning 
as with ecological colorings, we would posit that each vertex exerts an 
influence on its neighborhood which determines the distribution of 
colors therein. However, this is hardly plausible since each element in 
the neighborhood is also a neighbor of several other vertices as well, 
each exerting their own influence. Hence, a regular coloring requires 
positing a larger, network-wide force which simultaneously structures 
the patterning of all links. 2 Whereas an ecological coloring may be 
seen as emerging from the behavior of individual elements, regular 
colorings must come from the collectivity as a whole. In this sense, 
ecological colorings are more local or micro in spirit while regular 
colorings are more global or YIZLZCYO. ’ 

Both notions fit our intuitive understanding of the social concept of 
role. A named social role such as ‘doctor’ or ‘mother’ carries with it a 
set of relationships with other roles that every actor playing the role is 
expected to have with individuals playing reciprocal roles. For exam- 

’ For example, a regular coloring may be the result of cultural norms regarding rights of and 

obligations of individuals in certain positions vis-a-vis individuals in other positions. 
s Of course, even ecological colorings are not as local as structural colorings. In a structural 
coloring. one can determine whether to color two vertices the same without simultaneously 
coloring all other vertices in the graph. This is not true of ecological or regular colorings. 



ple, we are unpleasantly surprised when we find a doctor that does 
not heal patients or a mother that does not care for her children. This 
understanding is consistent with the notion of a regular coloring. At 
the same time, we expect that if an individual’s relationships with 
others are identical to those expected for a given role, then they can 
be considered to be playing that role. For example, if a person takes 
on all the duties of a teacher with respect to a set of students, it would 
be hard to avoid recognizing that they are playing the role of teacher. 
This understanding is consistent with an ecological coloring. 

4. Perfect colorings 

While ecological and regular colorings may be opposites in a certain 
sense, many colorings are both ecological and regular. We call such 
colorings perfect. They may be defined as follows: 

Definition 6. A coloring C is perfect if C(a) = C(b) iff C(N(a)) = 
C(fVb)). 

According to the definition, a coloring is perfect if it is both regular 
and ecological. That is, vertices with the same color environments are 
themselves the same color, and vertices of the same color have the 
same color environments. An example of a perfect coloring is given in 
Fig. 4. An example of a regular coloring that is not perfect was given 
in Fig. 3. 

The color image graph G’(C(V), E’) of a colored graph GfV, E) 
has the spectrum of I/ as its vertices; two vertices are adjacent in G’ if 
there exists an edge between the colors in G. Figure 5 is the color 
image graph of the non-perfect coloring given in Fig. 3. Note that the 
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image graph contains structurally equivalent vertices. As we shall see, 
an important characteristic of a perfect coloring is that its image 
graph contains I~O structurally equivalent vertices. In fact, this is the 
basis of the alternative definition of perfect coloring given by the next 
theorem. Note: The proof of the theorem requires the result given by 
Borgatti (1989) that a coloring is regular if and only if for every vertex 
a E V, C(N(a)) = MC(a)), where C(a) is a vertex in the colored 
image graph (see Everett and Borgatti 1993 for the proof). 

7Yieorem 7. A regular coloring is perfect if and only if the color image 
graph contains no structurally equivalent vertices. 

Proof. Suppose a graph G is perfectly colored and that in the image 
graph C(a) and C(b) are two distinct structurally equivalent vertices. 
By definition N(C(a)) = N(C(b)) but since the coloring is regular, by 
the result above, C(~(~)) = C(~(b)). But the coloring is also ecologi- 
cal so that C(a) = C(b), contradicting the fact that C(a) and C(b) are 
distinct. Conversely, suppose that G is regularly colored and the color 
image graph does not contain structurally equivalent vertices. If 
C(N(a)) = C(N(b)) then MC(a)) =N(C(b)), so that in the color 
image graph C(a) and C(b) are structurally equivalent. It follows that 
C(a) = C(b), and the theorem is complete. q 

Theorem 7 highlights the superiority of a perfect coloring over a 
regular coloring. Consider a 3-block regular blockmodel (Borgatti and 
Everett 1992a) of an adjacency matrix, as shown in Fig. 6. The 
blockmodel is not perfect. Note that, at the block level, the first and 
second blocks have identical patterns of connections with other blocks. 
If the pattern of relations among blocks defines the role that members 
of each block play (Boorman and White 1976), then we must say that 
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1 234 567 

0 0 1 

I!444 0 0 1 

1 1 0 

Fig. 6. Regular blockmodel. 
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members of both blocks are playing the same role. If this is the case, it 
seems arbitrary and hardly useful to separate these actors into sepa- 
rate blocks. What Theorem 7 says is that perfect blockmodels are 
regular blockmodels in which all blocks with identical relations to 
other blocks are merged together. This means that, in perfect block- 
models, the blocks are, in a certain sense, as large as possible, which is 
a very desirable quality. 

A maximal coloring is the coarsest partition which is consistent with 
a particular set of definitional conditions. The maximal regular color- 
ing is the maximum element of the lattice of regular colorings. This 
corresponds to the regular partition found by REGE (White 1984; 
Borgatti et al. 1992). The maximal structural coloring is the coloring in 
which any pair of structurally equivalent vertices are colored the same. 
The maximal automorphic coloring corresponds to the coloring of the 
orbits of the automorphism group of the graph. An application of 
Theorem 7 yields the following corollaries. 

Co~o&zty 8. The maximal structural coloring is perfect. 

Corollary 9. The maximal regular coloring is perfect. 

The proofs of these follow from results proved by Borgatti et al. 
(1989). They show that the color image graph of a maximal structural 
coloring does not contain structurally equivalent vertices, 4 from which 
Corollary 8 follows. In the same paper they prove that the composi- 
tion of regular colorings is regular. From this it follows that the image 
graph of the maximal regular coloring cannot contain structurally 
equivalent vertices (since this would induce a coarser regular coloring 
of the original graph) and Corollary 9 is established. An extremely 
useful consequence of Corollary 9 is that existing algorithms for 
detecting the maximal regular coloring of a graph need not be 
modified to find that particular perfect coloring. 5 

Unlike the others, the maximal automorphic equivalence is not 
necessarily perfect as shown by the example in Fig. 3. 

’ They use a slightly different definition of structural equivalence than is used here, but the 

result is still valid. 
’ However, Borgatti and Everett (1993) have recently shown that some algorithms which purport 

to find the maximal regular equivalence, such as the REGE algorithm (White 1984; Borgatti et 

al. 1992), do not always do so. 
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Theorem 7 also gives us a method by which we can construct the 
nearest coarser perfect coloring to any regular coloring. Suppose a 
graph G has been regular colored and the color image graph contains 
some structurally equivalent vertices. The maximal structural coloring 
of the color image graph will induce the nearest coarser perfect 
coloring on the original graph. This result follows directly from 
Theorem 7 and the composition theorem for regular colorings ~Borgatti 
et al. 1989). This result can be seen by considering Figs. 3, 4 and 5. 
Figure 3 gives a regular coloring. Figure 5 gives its color image graph. 
As noted earlier, the coloring in Fig. 3 is not perfect since the vertices 
in Fig. 5 colored black and grey are structurally equivalent. If we now 
color these vertices with the same color, such as black, then we induce 
the perfect coloring (of the original graph) that is shown in Fig. 4. 

Since the composition of regular colorings is regular it follows from 
Theorem 7 that the composition of perfect colorings is perfect. In fact, 
any regular coloring followed by a perfect coloring will be perfect, 
although a perfect coloring followed by a regular coloring need not be 
perfect. Ecological colorings do not compose in this way. 

It should come as no surprise that the class of all perfect colorings 
for a graph also forms a lattice under the refinement ordering. This 
result is proved in our final theorem. 

Theorem 20. The set of all perfect colorings of a graph, ordered by the 
refinement relation, forms a lattice. 

Pro05 We shall prove the existence of arbitrary meets, For any set of 
perfect colorings we first construct the meet of all the colorings, using 
the same meet operation as in the lattice of regular colorings. This 
construction yields a regular coloring which may or may not be 
perfect. If it is perfect then we take this as the meet of the perfect 
colorings. If it is not perfect we find the nearest coarser meet using 
the construction described above based upon Theorem 7. The result is 
obviously a perfect coloring which is the infimum with respect to the 
refinement ordering. •I 

While all perfect colorings are regular, the lattice of perfect color- 
ings is not a sub-lattice of the regular lattice: they have different joins. 
Consider, for example, the regular and perfect lattices associated with 
the graph in Fig. 7. Both lattices contain the partitions ({l, 21, 14, 5}, 



53 

Fig. 7. 

{3}, (61, (71) and ({2, 31, (5, 6}, {l}, (41, I71). In the regular lattice, the 
join of these two is {{l, 2, 31, {4, 5, 61, (7)). But this partition is not 
perfect. In the perfect lattice, the join is ((1, 2, 3, 7}, {4, 5, 6)). Hence, 
the perfect lattice is not a sub-lattice of the regular lattice. 

5. Conclusion 

White and Reitz (1983) have suggested that the intuitive notion of 
social role implies that if two actors are playing the same role, then 
they have the same social relations with the same players of the same 
roles. This is the property of regularity. However, there is more to the 
notion of social role than regularity, An equally important component 
of the role concept is the idea that if two actors have the same 
relations with the same roles, then they are themselves playing the 
same role. This is the property we have termed ecological. Thus, social 
roles are best formalized by perfect colorings, which possess both 
properties. In addition, the ecological property may be useful in other 
contexts as well, as in population ecology approaches to organizational 
structure, and power in exchange networks. 
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