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Abstract

A coloration is an exact regular coloration if whenever two vertices are colored the same
they have identically colored neighborhoods. For example, if one of the two vertices that are
colored the same is connected to three yellow vertices, two white and red, then the other
vertex is as well. Exact regular colorations have been discussed informally in the social
network literature. However they have been part of the mathematical literature for some
time, though in a different format. We explore this concept in terms of social networks and
illustrate some important results taken from the mathematical literature. In addition we
show how the concept can be extended to ecological and perfect colorations, and discuss
how the CATREGE algorithm can be extended to find the maximal exact regular coloration
of a graph.

1. Introduction

The use of regular equivalences to formally capture the intuitive notions of
position and social role is well established in the social networks literature.
Regular equivalence provides an important theoretical underpinning for a variety
of practical tools for data analysis. The richness of the idea, first published by
White and Reitz (1983), became clear when it was realized that the concept
defines a lattice of equivalences (Borgatti and Everett, 1989) which includes both
structural equivalence (Lorrain and White, 1971) and automorphic equivalence
(Winship and Mandel, 1983; Everett, 1985) as members. Everett and Borgatti
(1991) reformulated the concept in terms of graph coloration. A review and
synthesis of the mathematical properties of regular coloration can be found in
Everett and Borgatti (1994a).
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The major criticism of structural equivalence as a model for social role is that
for two individuals to be equivalent they must be tied to exactly the same others.
Maximal regular coloration overcomes this problem but has practical utility only
when applied to digraphs; the maximal regular coloration of a connected undi-
rected graph is trivial. Automorphic equivalence is a method which is applicable to
graphs and digraphs but is computationally difficult. While some algorithms have
been proposed (e.g. in UCINET, Borgatti et al., 1992 or Sparrow, 1993) these
algorithms, except in very small networks, cannot guarantee to find the orbits when
they exist, nor do they provide easily interpretable cost functions for measuring
how close to an orbit partition a given partition is. The latter consideration is
important in the design of combinatorial optimization algorithms.

In this paper we explore a regular coloration which is not necessarily trivial for
graphs can be found by an iterative method and can be formulated as a problem in
combinatorial optimization. The concept is less strict than automorphic equiva-
lence and is therefore more common. We also consider some additional related
colorations that are not regular.

Before giving a formal definition it is necessary to introduce some notation. Let
G(V, E) be a finite graph with vertex set I and edge set E. The edges can be
directed and both self loops and multiple edges are allowed. If v € V' then the in
degree of v, denoted by p,(v), is the number of edges which terminate at v. The
out-degree, p (v), is the number of edges which initiate from v.

A coloration C is an assignment of colors to the vertices of G. If S is a subset of
V then the spectrum of S, denoted by C(S), is the set of colors assigned to the
vertices in §. Additionally, if k£ is a color, then the k in-degree of v, denoted by
*p/(v) is the number of edges which initiate from a vertex colored k and terminate
with v. The k out-degree, "po(v), is the number of edges which initiate from v and
terminate at a vertex colored k. In the graph in Fig. 1 we see that p(2) =3,
pi@)=6,"p(5)=2and ®p,(4) = 5.

Fig. 1. A coloration of a digraph.
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A coloration C of a graph G(V, E) is an exact regular coloration if and only if
for all u, v €V and every k € C(V)

C(u) = C(v) = *p,(u) =*py(v) and “p (1) =*p (v)

If G is not directed then clearly these last two conditions are equal and reduce
to

“o(u) =*p(v)

Exact regular colorations in the context of social networks were first discussed
by Borgatti and Everett (1992) but were not formally defined until later in Everett
and Borgatti (1994b) where they were called exact colorations. However, the
concept has been part of the graph theory literature for nearly 30 years where it is
known as the divisor concept (Sachs, 1966).

Two actors are exactly regularly equivalent if they have neighborhoods with
identical colors. Clearly exactly regularly equivalent actors are regularly equivalent
but the converse is false. As a practical example, consider the biological parent
relationship. Structural coloration would class together only children of the same
mother (i.e. brothers and sisters). Each mother would be placed in her own class.
Maximal regular coloration would put together all mothers in one class and all
children in the other. Like automorphic coloration, exact regular coloration would
put together all mothers with the same number of children and all children with
the same number of brothers and sisters.

Fig. 1 is not an exact regular coloration. For example C(4) = C(3) but *p,(4) =5
whereas®p,(3) = 1. The graph shown in Fig. 2 is an exact regular coloration. We
see that each vertex colored R is connected to two vertices colored B and one
vertex colored R and each B vertex is connected to one vertex colored B and two
vertices colored R.

Any coloration based upon structural equivalence will result in an exact regular
coloration. Also the orbits of any subgroup of the automorphism group of a graph
will induce an exact regular coloration. The concept is, however, more general
than automorphic equivalence. This is shown by the graph in Fig. 2. As already
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Fig. 2. An exact regular coloration.
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Fig. 3. An alternative exact regular coloration of the graph in Fig. 2.

stated, this coloration is an exact regular coloration, but since two vertices colored
B are in cycles of length 3 and the two other vertices colored B are not, the
coloration cannot have been derived from the orbit structure of any subgroup.

2. Properties

A graph or digraph may have more than one exact regular coloration. For
example, the graph in Fig. 3 is a different exact regular coloration from the one in
Fig. 2. In addition, coloring each vertex the same would be exact regular (since the
graph is regular) and coloring each vertex differently is vacuously exactly regular. It
is well known that the set of all regular colorations form a lattice under the
refinement relation (Borgatti and Everett, 1989). This property carries over to
exact regular colorations.

Theorem 1 (Everett and Borgatti, 1994). The class of all exact regular colorations
form a lattice under the refinement relation.

The minimum element of this lattice is the trivial coloration in which every
vertex is colored differently. We shall call the maximal element the maximal exact
regular coloration. The maximal exact regular coloration of a regular graph will
simply be the coloration which colors all vertices the same. However, for any
non-regular graph this will not be the case. The graph in Fig. 4 has a non-trivial
maximal exact regular coloration which is not derived from the orbit structure nor
is it simply a coloring of the vertices by degree. This is easily seen since all red and
green vertices have the same degree but two of the red vertices are on cycles of
length three and two of them are not. As already stated, exact regular coloration
can be viewed as a relaxation of automorphic equivalence. It shares with automor-
phic equivalence the important property that the equivalance classes for an
undirected graph are not necessarily trivial. However, this in itself would not make
it preferable to automorphic equivalence. Its strength lies in the fact that, unlike
automorphic equivalence, we can adapt standard algorithms to find the maximal
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Fig. 4. A maximal exact coloration not derived from the orbits.

element of the lattice and develop cost functions which can be used in combinato-
rial optimization algorithms.

We can capture the essential feature of exact regular equivalence in an
enhanced image graph. Let G(V, E) be a graph with an exact regular coloration C.
The enhanced image graph G'(C(V'), E’) has the spectrum of V as its vertices. Two
vertices A and B in the image graph have an edge from A4 to B of weight w if a
vertex colored A is connected to w vertices colored B in G. Note that an
undirected graph gives rise to a weighted digraph as an enhanced image graph.
Fig. 5 gives the enhanced image graph for the regular coloration given in Fig. 3.
Note also that the colors assigned to the vertices are no longer a coloration but are
simply labels. We can now color the image vertices and this coloration of the image
could also be regular. Note that the weights on the edges give their multiplicity and
this must be taken into account when deciding whether a coloration is exact
regular or not. Fig. 6 gives a regular coloration of the enhanced image graph in
Fig. 5. Suppose that C is a coloration of G(V, E) and C’ is a coloration of the
enhanced image G'(C(V'), E'). Then for every vertex v € V the composite col-
oration C'°C assigns the color C'(C(v)). The composition of the colorations in
Figs. 3 and 6 give the coloration shown in Fig. 2. We note that this composition

L
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Fig. 5. The enhanced image graph of the coloration in Fig. 3.
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B

Fig. 6. An exact coloration of the enhanced image graph in Fig. 5.

results in another exact regular coloration of the graph in Fig. 3. This property
holds in general and was noted by the developers of the divisor concept.

Theorem 2 (Cuetorick et al., 1987). If C is an exact regular coloration of a graph G
and C’ is an exact regular coloration of the enhanced image graph G’ then C’°C is
an exact regular coloration of G.

The interest shown by mathematicians in exact regular coloration derives from
an important property of the enhanced image graph. The eigenvalues and charac-
teristic polynomial of a graph are defined to be the eigenvalues and characteristic
polynomial of its adjacency matrix.

Theorem 3 (Sachs, 1966). The characteristic polynomial of the enhanced image
graph of an exact regular coloration divides the characteristic polynomial of the
original graph.

It is for this reason that exact regular coloration is known as the divisor concept
in the graph theory literature. In fact, a stronger version of this theorem was
proved. A coloration C is an exact out-regular coloration if and only if for all u,
veVandevery ke C(V)

C(u) = C(v) = “p,(u) =*po(v)
We can replace exact regular coloration by exact out-regular coloration and the
theorem remains true.
We can illustrate the above theorem by examining the eigenvalues of the graph
in Fig. 3, the graph in Fig. 5 and the graph in Fig. 7. The graph in Fig. 7 is the

2 1

B R
2

Fig. 7. The enhanced image of the coloration in Fig. 6.
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15 2 468 37
1 01 1001 00
5 10 0110 00
2 10 0001 10
4 01 0010 10
6 01 0100 01
8 10 1000 01
3 00 1100 01
7 00 0011 10

Fig. 8. Blockmodel corresponding to the exact regular correlation in Fig. 3.

enhanced image of the exact regular coloration (see Fig. 6) of the graph in Fig. 5,
which is itself the image graph of the exact regular coloration shown in Fig. 3. The
eigenvalues of the graphs in Figs. 3, 5, and 7 are, respectively, {3,+ 3, £ 1,— 1+
v2h {£1,3}, and {-1,3}). As predicted, each set of eigenvalues is a subset of the
preceding set.

Given a coloration of the vertices of a graph, it is common in network analysis
to permute the rows and columns of the adjacency matrix of the graph so as to
group together vertices that are colored the same. The partitioned and permuted
matrix is often called a blockmodel. A blockmodel induces a partition of the cells
of the adjacency matrix into matrix blocks, as shown in Fig. 8. We can now
characterize exact regular coloration in terms of the induced blocks of the
adjacency matrix. The proof of the following theorem is straightforward.

Theorem 4. A coloration of a graph is an exact regular coloration if and only if
each block of the induced partition has every row sum the same and every column
sum the same.

Note that within any block the row sums may be different from the column
sums, as is the case in Fig. 8. It is the value of the row sums which form the entries
of the adjacency matrix of the enhanced image graph.

This formulation allows us to define a cost function which measures to what
extent a given coloration is an exact regular coloration. This function merely sums
the minimum number of changes required to make each block fulfil the condition.
This can be submitted to a combinatorial optimization routine. This approach has
been used successfully for small networks to find certain regular colorations
(Batagelj et al., 1992).

3. Exact regular coloration algorithms

Combinatorial optimization methods, whilst useful for small networks have
some important shortcomings. Firstly, the user must specify the number of blocks
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(i.e. the number of colors in the coloration). Secondly there is no guarantee that
the algorithm will find the global minimum of the cost function. Finally, the
method is not efficient on large networks. In this section we show how the
algorithm CATREGE (Borgatti and Everett, 1993) can be adapted to find the
maximal exact regular coloration. This new algorithm, called EXCATRE, is of the
order of n. It can find the maximal exact regular coloration of, say a 250 vertex
graph in one or two seconds on a PC. A combinatorial optimization program could
take hours, even days, to complete this task.

The EXCATRE algorithm creates a series of increasingly refined colorations,
beginning with the one in which all nodes are colored the same and ending with
the maximal exact regular coloration. The color of a node v in the tth iteration is
written C'(v).

1. Set iteration counter to zero (¢ « 0) and assign all nodes the same color for the
initial coloration (C'(j) « 1 for all j).

2. Assign each node a unique color for the next coloration (C!*(f) « j for all j)
and set FLAG « FALSE.

3. For every pair of nodes u, v colored the same in coloration ¢, compare their
k-in-degree and k-out-degree for all k. If they are exactly the same, then
reassign C!*(u) « C**1(v), else set FLAG « TRUE.

4. If FLAG « TRUE then increment counter ¢ and goto step 2.

A benefit of the algorithm is the sequence of intermediate colorations, which
may be seen as approximate or nearly exact regular colorations. This is useful for
analyzing graphs in which the maximal exact regular colorations is the identity
partition in which all nodes are assigned a unique color. For example, if we apply
the algorithm to John Padgett’s data on marriages between medieval Florentine
families (reported by Breiger and Pattison, 1986), coloration C! divides the
families into six classes, including two singletons (see Fig. 9). The next coloration,
C?, places all families in their own singleton classes except Ridolfi and Tornabuoni,
who remain assigned the same color. The final coloration yields the (trivial)
maximal exact regular coloration. As with CATREGE, the number of iterations
needed to separate two vertices can be taken as a simple measure of the extent of
exact regular equivalence between the vertices.

This algorithm can be viewed as a special case of a general coloring algorithm.
The general coloring algorithm can be used for any coloration of the form

C(u) =C(v) = condition uv €V

This class includes regular, exact regular and automorphic equivalence, as well
as non-regular colorations such as in and out regular and in and out exact regular.
For definitions and a review of the mathematical properties of these equivalence
see Everett and Borgatti (1994a). The general coloring algorithm proceeds as
follows:

0. Initially assign all vertices the same color.

1. For each distinct color k presently in use:

(a) choose any vertex . that is colored «,
(b) define a new color m not previously used,
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Fig. 9. Equivalence classes after the first iteration of the ExCatRe algorithm, applied to Padgett’s
marriage data.

(c) test the equivalence condition on every other vertex colored k,
(d) for all vertices v that fail the test, let C(v) = .

2. Repeat Step 1 until no further recolorings occur.

The above algorithm will terminate after at most »n iterations (where n is the
number of vertices) of Step 1. This step can be executed in O(n?) time for the
exact regular coloration condition (this is the same as EXCATRE) so that the
algorithm has O(n®). Convergence will be to the maximum equivalence i.e. the
equivalence which requires the fewest number of colors. It should be noted that
whilst this algorithm can be used in principle to find the orbits it would not be
practicable. To check the condition we would need to know the orbits already,
hence it would be n times more inefficient than a straight orbit finder. (All such
algorithms are exponential.)

We illustrate the algorithm on the graph in Fig. 4 (we remove the colors
assigned to the vertices). At Step 0, we assign the color RED to every vertex. At
Step 1, we arbitrarily choose vertex 3 as our reference point, and compare the
neighborhoods of all vertices to the neighborhood of vertex 3. Since the vertex is
connected to three RED vertices the only vertex to fail the condition is vertex 5
which we re-color GREEN. We now move to Step 2 which sends us back to Step 1.

Starting with the RED vertices, our first fixed vertex is again 3 and it is now
adjacent to two Red (1 and 2) and one Green (5) vertex. We note that the Red
vertices 4, 6 and 7 satisfy this condition but 1, 2, 8 and 9 do not. We therefore
re-color these vertices Yellow and fix vertex 1 (say). We now consider the next
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fixed vertex, 5, which is colored Green. As this is the only Green vertex we do not
have to perform the task and therefore all fixed vertices have now been consid-
ered. We again repeat the procedure in Step 1. This iteration does not involve any
re-coloring so the algorithm terminates with the exact regular coloration given in
Fig. 4.

The efficiency of this algorithm can be improved by implementing more sophis-
ticated re-coloration and an improved starting coloration. (We could for example
color each vertex according to its degree.) One shortcoming of the algorithm is that
we would not generally find the intermediate colorations to be interpretable, so
that no measure of the extent of equivalence between vertices is possible.

4. Exact perfect colorations

Borgatti and Everett (1992) introduce the concept of ecological coloration to try
and capture the idea that an actor’s social role is determined by their environment.
This concept is developed further in Borgatti and Everett (1994). In the latter
paper they give the following definitions.

A coloration C is ecological if ¥V a,b €V whenever C(N,(u))= C(N,(v)) and
C(Ny(u)) = C(Ny(v)) then C(u)= C(v). Ecological colorations are precisely the
converse of regular colorations. A coloration which is both regular and ecological
is called perfect.

An exact perfect coloration is an ecological coloration which is also an exact
regular coloration. The coloration given in Fig. 4 is an exact perfect coloration.
Structural equivalence is also an exact perfect coloration. The exact regular
coloration given in Fig. 2 is not an exact perfect coloration. We can again adapt
theorems given by Borgatti and Everett on perfect colorations so that they apply to
exact perfect colorations.

Theorem 5. An exact regular coloration is an exact perfect coloration if and only if
the image graph contains no structurally equivalent vertices.

Theorem 6. The set of all exact perfect colorations of a graph, ordered by the
refinement relation, forms a lattice.

5. Exact ecological colorations

We can extend the concept to exact ecological colorations. An exact ecological
coloration is one in which we insist that vertices with identically colored neighbor-
hoods must be colored the same. Formally a coloration C of a graph G(V, E) is an
exact ecological coloration if and only if for all u, v € V and every k € C(V) if

“pi(u) = "pi(v)
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Fig. 10. An exact ecological coloration which is not ecological.

and

*0o(1) = “po(v)
then
C(u) =C(v)

This condition is a weakening of the ecological colorations. All ecological
colorations are exact ecological but the converse is not true. The coloration given
in Fig. 10 is an exact ecological coloration which is not ecological. This can be seen
by noting that the neighborhoods of the Red vertices are Green and the colors of
the Yellow vertices’ neighborhoods are also Green (but 2 Greens instead of 1).

Note that an exact perfect coloration, defined in the previous section, is not a
regular coloration which is also an exact ecological coloration.

As with the other colorations we have introduced, the set of exact ecological
colorations forms a lattice.

Theorem 7. The set of all exact ecological colorations ordered by the refinement
relation, form a lattice.

Proof. Similar to the lattice proof for ecological colorations in Borgatti and
Everett, 1994 (Theorem 5). O

The model of exact ecological coloration captures the property that it is not just
the connections to individuals with certain properties that mould an individual’s
role, but the number of such individuals. This view is consistent with the network
models of contagion (Burt, 1992) in which importance is placed on the number of
actors in the neighborhood with certain attributes. For example, we might expect a
social environment which includes 25 criminals to exert a different social pressure
than an environment which includes only one criminal, therefore we would not
necessarily expect the same outcomes for two individuals with such different
environments (unlike the model of ecological coloration).

Exact ecological colorations can be used to extend the work of Borgatti and
Everett (1992) on experimental exchange networks (Cook et al., 1983; Markovsky
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Fig. 11. An exchange network.

et al., 1988). In these experiments, actors embedded in different opportunity
networks bargain with each other for points. If we regard actors who trade at
parity to be equivalent, we induce a coloration on the nodes of the opportunity
network. Borgatti and Everett suggested on theoretical grounds that such col-
orations would be ecological because the bargaining power of an actor is a function
of the power of the actors in their neighborhood ~ an actor surrounded by only
weak actors will have power, whereas an actor surrounded by only strong actors
will not.

However, preliminary results from a more recent study by Skvoretz and Willer !
on the graph in Fig. 11 cast some doubt on this theory. They found, pending
statistical analysis, that only nodes ¢ and d clearly trade at parity. The coloration
induced ({{a}{bHc, dHe}{f}}) is not ecological, because both f and e are sur-
rounded by the same color neighborhoods, yet they are assigned different colors
themselves. However, the coloration is an exact ecological coloration, since f is
connected to two elements while e is connected to just one. The suggestion is that
ecological coloration is too strong a model for exchange experiments because it
considers only the types of colors in a node’s neighborhood, and not the frequency.
Hence it contradicts the common sense assumption that being connected to five
weak nodes is no more advantageous than being connected to one weak node.
Exact ecological coloration corrects this deficiency. *

6. Conclusion

Over the last 25 years of social network research, two major families of
equivalence concepts have been advanced; the regular and ecological colorations.
The fundamental theme of this work is that actors are classified in terms of their
connections to types of actors. However, little attention has been paid to the

I This work is unpublished as yet. Preliminary results were reported by Borgatti (1994) with
permission. The present authors are grateful to Skvoretz and Willer for allowing us to use these results
in this paper as well.

2 The authors are indebted to James Boster for criticizing ecological coloration in this way.
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number of connections to each type of actor. In this paper, we have introduced
that consideration for both regular and ecological colorations. In the case of
regular colorations, this means narrowing our focus down to a subset of regular
colorations. In the case of ecological colorations, this means widening our focus up
to a superset of colorations that include ecological colorations as members. Both
exact regular colorations and exact ecological colorations provide stronger links to
existing mathematical theory, and may provide better models for empirical net-
work phenomena.
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