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Abstract

Network analysts have developed a number of techniques for identifying cohesive subgroups in networks.
In general, however, no consideration is given to actors that do not belong to a given group. In this paper, we
explore ways of identifying actors that are not members of a given cohesive subgroup, but who are sufficiently
well tied to the group to be considered peripheral members. We then use this information to explore the
structure of the network as a whole. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Ž .In a companion piece, Borgatti and Everett 1999 have proposed a formal model of
corerperiphery structures. In their model, 2 a network has a corerperiphery structure if
the network can be partitioned into two sets: a core whose members are densely tied to
each other, and a periphery whose members have more ties to core members than to
each other. Implicit in their discussion is the conception of a core as a cohesive

Ž .subgroup, and in particular as a clique Luce and Perry, 1949 . In the cohesive
subgroups literature, however, many other formal definitions of subgroups have been

w Ž . Ž .xproposed for reviews, see Scott 1991 and Wasserman and Faust 1994 . Theoreti-
cally, any of these could have been used instead of cliques to define network cores.

Furthermore, Borgatti and Everett do not seriously consider the possibility of multiple
cores. Their concern is with detecting whether the network as a whole forms a
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corerperiphery structure. Logically, however, any cohesive subgroup can be regarded as
the core of a highly localized region of the network. From this perspective, any node can
be classified as a member of a local core, or as a member of the periphery of that core,
or as unrelated to either one.

Thus, whereas Borgatti and Everett essentially take a network and seek to identify the
subgraph that serves as its core, this paper takes a subgraph which has been declared to
be a core and seeks to identify the network region for which it serves as core. That
region is the core’s periphery.

2. Defining peripheries

We take as a starting point the identification of a specific cohesive subgroup via any
of the methods and definitions found in the literature. These would include such groups

Ž . Ž .as a clique Luce and Perry, 1949 , an n-clique Luce, 1950; Alba, 1973 , an n-club or
Ž . Ž .n-clan Mokken, 1979 , or a k-plex Seidman and Foster, 1978 . Once chosen, we

declare the subgroup to be a core, and then seek to identify its periphery.
An obvious approach is to define the periphery as the set of all vertices not in the

core that are adjacent to at least one member of the core. Restricting the periphery in this
way to ‘hangers-on’ is appropriate if we think of the periphery as actors that are clearly

Ž .associated with the core and perhaps would like to move into the core . However, for
other purposes we may prefer to include other nodes — not directly connected to the
core — as part of the periphery as well. That is, we could conceive the periphery as
simply all outsiders. These are two extremes of a continuum of possible definitions and
it would make sense to have a general definition of periphery that could encompass all
of these possibilities. We therefore propose the following:

Definition 1. Let G be any graph, and let C be a cohesive subgroup, called a core of
G. Then the periphery P is GyC. If ÕgP then we say Õ is in the k-periphery if Õ is
a distance less than or equal to k from C.

The measure of distance between a node Õ and a group C is left deliberately
undefined, so as to keep the definition completely general. Both the method of detecting
the cohesive subgroup and the distance measure can be determined by the researcher and
can therefore be related to the type of data to be analyzed. An obvious choice of distance
would be the ‘nearest neighbor’. That is, the distance from a node to the core is defined
as the shortest graph-theoretic distance from the node to any member of the core. By

Ž .analogy to the hierarchical clustering of Johnson 1967 , an obvious alternative choice of
distance would be the ‘farthest neighbor’ or maximum distance. Other choices would
include the average distance, the median distance, and so on. It should also be noted that
distance to the core need not be defined in terms of graph-theoretic distance at all. For
example, a metric based on the extent to which the node is structurally equivalent to the
members of the core would do just as well.
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Fig. 1.

Let us assume that we take average geodesic distance as the definition of distance
between a node and the core. In this case, the ‘‘k’’ of the k-periphery is not necessarily
an integer, and provides a sensitive measure of the ‘‘coreness’’ of each peripheral point.
Ž .In fact, it can also be used to measure the coreness of each member of the core as well.

If instead we take the minimum geodesic distance as the definition of node-to-core
distance, then k does not provide as sensitive a measure of coreness. For example,

� 4consider the network in Fig. 1, taking the clique 1,2,3,4 as the core. All other points in
the graph comprise the 1-periphery, even though some of these nodes are better
connected to the core than others. Since even in graphs with 2-peripheries and
3-peripheries the 1-periphery is likely to be a focus of interest, it makes sense to try to
develop a secondary measure of coreness that distinguishes among members of the
1-periphery. Our measure will be based loosely on the idea that members of the
1-periphery have as a primary goal the desire to become members of the core. 3 The

Ž .measure, CP Õ , we propose is as follows:

Ž .Definition 2. For ÕgV, if ÕgC then CP Õ s1, otherwise let q be the minimum
number of edges incident with Õ that are required to make Õ part of C and let r be the

Ž .number of those edges that are already incident with Õ. Then CP Õ srrq. We call
Ž .CP Õ the coreness of vertex Õ.

The CP measure varies from 0 to 1. All core actors have a value of 1. Given the
choice of nearest neighbor distance in Definition 1, all 1-periphery actors will have a
non-zero value for cores defined by any of the standard cohesive subgraph models. Note
that while k-peripheries are defined in terms of distance, the CP measure is defined in
terms of volume of ties. It is well known that there exist two key dimensions of cohesion

3 As an anonymous review has pointed out, such a desire could be seen as consistent with maximizing the
Ž .player’s structural holes Burt, 1992 if the network has only one core, but not if the network has multiple

cores.
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in networks: distance and density of ties. For example, there are many relaxations of the
clique concept. Some, like n-clique, are based on relaxing the distances within the
group. Others, like k-plex, are based on relaxing the density of ties. The relaxation
principles are complementary and should be used together. Hence, it is very appropriate
that we use distance to define the 1-periphery, and then use density of ties to subdivide
the 1-periphery. 4

Given that we are using the Luce and Perry clique as the basis for identifying the core
in Fig. 1, to enlarge the core we must supply a vertex that is adjacent to all four of the
existing core members. This would mean that qs4. It follows that in Fig. 1 the vertices

Ž . Ž .with degree 1 have CP Õ s0.25, the vertices with degree 2 have CP Õ s0.5 and all
Ž . Ž .other vertices those in the core have CP Õ s1.

Ž .An empirical example is provided by the Zachary Karate Club data Zachary, 1977 .
As an alternative to cliques we shall use k-plexes. 5 We select as a core the only 2-plex

� 4of size 6, which consists of actors 1,2,3,4,8,14 . By definition, each of these actors is
adjacent to four others in that group. The 1-periphery of this core consists of actors
� 45,6,7,9,10,11,12,13,15,18,20,22,28,29,31,32,33,34 . That is, each of these actors is
adjacent to 1 or more actors in the 2-plex. To enlarge the 2-plex to seven actors, each
actor must be connected to five others. Each member of the 1-periphery has either one
or two of the five edges required to place them in the 2-plex. Those with two edges

Ž .present numbers 9, 13, 18, 20 and 22 therefore have CPs0.4 and the remainder have
CPs0.2. We note that none of the periphery are very close to becoming members of
the core, which suggests a structure in which a tight inner group has distanced itself
from those on the outside.

It should be noted that working with k-plexes introduces an additional complexity
that is not found with cliques. Consider, for example, the graph in Fig. 2. The set
� 41,2,3,4,5 is a 2-plex, as each node is connected to at least 5y2s3 others in the set.

Ž .To add node 6 to the set bringing the set to six members would require adding two ties
from node 6 to the set, so that it would have 6y2s4 ties to other group members. But
the ties have to be carefully chosen as otherwise the resulting group will not be a 2-plex.
In particular, the additional ties must be to nodes 5 and 3, since otherwise each of them
will be connected to only three members of the group, which would mean the group was
no longer a 2-plex. An interesting thing occurs if node 6 was to ignore our prescription

�and become adjacent to nodes 4 and 3. Then a new 2-plex would form consisting of 1,
42, 3, 4, 6 , which would exclude node 5.

So far we have not taken account of ties among the peripheral nodes. The use of a
cohesive subgraph to define a core means that ties among the core will normally be
numerous and their density is likely to be greater than core-to-periphery, but periphery-

4 An alternative approach would have been to define k-peripheries in terms of the number of ties needed to
enter the core, and distance to the core to refine those bands of closeness. However, because the number of ties
needed to enter a core varies with the size of the core, in practice this approach is much more difficult to
understand.

5 Ž .We assume that k-plexes must be maximal, although the original definition by Seidman and Foster 1978
did not include that requirement.



( )M.G. EÕerett, S.P. BorgattirSocial Networks 21 1999 397–407 401

Fig. 2.

to-periphery interaction could still be quite high. We can measure this for any node by
the Peripheral Degree index, P , whereD

Number of peripheral actors connected to Õ
P Õ s .Ž .D Total number of peripheral actors

Ž .For the idealized network in Fig. 1, all peripheral actors have P Õ s0. In theD
Ž .Zachary dataset again choosing the 2-plex of size 6 as the core , some actors have

Ž .P Õ s0, such as actors 12 and 13, but others have much higher values. For example,D

actor 34 has P s0.89. This suggests that actor 34, in contrast to 12 and 13, has ratherD

more interest in the other peripheral actors and may not view the core as a group to get
more involved with. Rather than look at the peripheral degree of individual actors, we
may be interested in the density of the peripheral actors as a group. In this instance we
are more concerned with the overall structural properties of the network as a whole. This
is in the spirit of the partition-based models described in the next section. If C is a core
with periphery P, then the peripheral density is simply the density of the subgraph
induced by P. A low peripheral density for a 1-periphery could indicate an elite
structure in which the periphery members only wish to have contacts with the elite core.
How close peripheral individuals are getting to the elite is given by the coreness
measure.

The periphery for the Zachary data has a density of 0.12, which is similar to density
Ž .of the network as a whole 0.14 . This suggests that members of this periphery do not

actively shun one another, as one might expect in a status-based corerperiphery
structure. In such a structure, both members of the core and the periphery prefer to
interact with the core, so we expect the density of the periphery to be especially low.

Ž .Interestingly, if we remove actor 34 whose P s0.89 from the periphery, theD

peripheral density drops down to 0.07, which is only half the density of the network as a
whole and which, contrary to our earlier conclusion, is suggestive of a status-based
corerperiphery structure. One possible explanation could be that actor 34 is part of
another cohesive subgroup which is in competition for members with the identified core
we have been considering.

A clique analysis of the data reveals two basic groups, the 2-plex that we have been
� 4 � 4examining, 1,2,3,4,8,14 , and a second group 9,24,30,31,33,34 . This second group

contains four members of the 1-periphery of the first group. From the perspective of
looking for a status-based corerperiphery structure, these four do not really belong in



( )M.G. EÕerett, S.P. BorgattirSocial Networks 21 1999 397–407402

the 1-periphery: at the very least, they are playing a rather different structural role than
the other members of the 1-periphery. If we remove them and recalculate the density of
the 1-periphery, we find it drops down to 0.05. It should be noted that the justification
for removing these nodes is not to decrease this density but that being a member of a
different core is simply not consistent with the status-based corerperiphery notion we
are trying to explore.

3. An alternative approach

One of the problems with the 1-periphery is that it can be quite large. The 2-plex core
of the Zachary data consisted of five actors but had a 1-periphery consisting of 18
actors. We can use the values of CP and P to restrict the size of the periphery, butD

Žthese values do not give any insight or restriction on the structure of the periphery i.e.,
.the ties among peripheral members . An alternative approach is to look at the generaliza-

tions of cliques that contain parameters that can be adjusted so as to relax the conditions
of membership. Such generalizations produce hierarchies of clique-like structures, and
these can be viewed as cores and peripheries. For example we can take a 1-clique as a
core and define the periphery as members of the inclusive 2-clique which are not in the
original clique.

� 4As an example, consider the graph in Fig. 3. The single 1-clique is c,d,e . The two
� 4 � 4 � 42-cliques that include c,d,e are b,c,d,e and c,d,e,f . Therefore, we consider the
� 42-clique periphery to be b,f , which are the two nodes in the inclusive 2-cliques that are

not in the 1-clique.
Ž .As a practical example, consider the Taro data reported in Hage and Harary 1983 .

This dataset looks at the relation of gift-giving among 22 households in a Papuan
village. Table 1 lists the 2-plexes with four or more actors. We shall use these as the
cores. Each core is simply considered in turn and is the focus of an individual analysis.

ŽFor each core we find the associated 4-plexes i.e., the 4-plexes which contains the
.2-plex as a subset and list the vertices contained in the 4-plexes which are not in the

2-plex. This we label as the 4-plex periphery. The third column gives the 1-periphery of
the core as defined previously.

We can see immediately by looking at the second two columns that this method has
the desired effect of reducing the size of the corresponding peripheries. This is
principally because we are only identifying those actors that are close to becoming core
members, whereas the 1-periphery includes highly peripheral actors. Note that the
elements in the 4-plex periphery could not have been identified by using the CP or PD

Fig. 3.
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Table 1
Taro cores and peripheries

2-plexes 4-plex-periphery 1-periphery

1 2 3 17 18 22 4 5 16 18 22
4 5 6 7 16 19 20 21 1 3 8 16 19 20 21
5 11 20 21 12 18 1 4 6 10 12 18
12 13 14 15 16 19 9 11 16 19

values as filters. This is because these measures are calculated independently for each
actor. In contrast, the technique discussed here takes account of combinations of actors
which together satisfy the conditions of being members of the periphery but which
separately would not.

Related to the approach we have just discussed is the idea of k-cores first proposed
Ž .for use in social network research by Seidman 1983 . A k-core is a connected maximal

induced subgraph which has minimum degree greater than or equal to k. Loosely
speaking, these are regions of the network that contain pockets of densely connected
actors. They may not be cohesive themselves, but any cohesive structures within the
network must be contained within them. Seidman describes them as seedbeds for cliques
or other cohesive structures. Having first identified the k-cores, it would be possible to
remove the cliques or clique-like structures from them to leave a periphery. This is
applying the same technique as we have just described but instead of using a more
relaxed version of the cohesive structure we are using the k-cores. Since k-cores do not
overlap, we simply find the largest value of k in which our cohesive subgraph is

Žcontained. If we wished to extend our periphery, we could simply take smaller values
.of k.

For an empirical example we return to the 2-plex of size 6 found in the Zachary data.
The largest value of k that has a k-core containing the 2-plex is 4, the 4-core is
� 4 � 41,2,3,4,8,9,14,31,33,34 which yields a periphery consisting of 9,31,33,34 . This
immediately demonstrates the problem of using k-cores, since this group is actually
another clique that is located close to the core 2-plex. This problem also occurred when
we examined the CP and P values in the 1-periphery. The 3-core periphery consists ofD
� 45, 6, 7, 9, 11, 20, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34 . All the underlined actors are
members of cliques contained wholly within the 3-core periphery. If we consider
removing all 2-plexes with four or more vertices contained completely within the

Ž .periphery since we used this as the defining property of the core , we end up with a
periphery consisting of just 28 and 29. Clearly the k-core model is useful in identifying
peripheries, but care must be taken as the k-cores contain both cores and peripheries and
it may be difficult to separate out individual actors into appropriate groups.

4. Completing the picture

An individual actor can be in more than one core and more than one periphery.
Peripheral actors who belong to more than one periphery may be well placed to exploit
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Table 2
CP matrix for cliques of Taro data

Actor C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

R1 0.66 1.00 0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00
R2 1.00 1.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R3 1.00 0.66 0.33 0.33 0.33 0.00 0.00 0.00 0.00 0.00
R4 0.33 0.00 0.00 1.00 1.00 0.33 0.00 0.00 0.00 0.00
R5 0.00 0.33 0.00 1.00 0.66 1.00 0.00 0.66 0.00 0.00
R6 0.00 0.00 0.00 1.00 1.00 0.33 0.00 0.00 0.00 0.00
R7 0.00 0.00 0.00 0.66 1.00 0.00 0.33 0.00 0.00 0.00
R8 0.00 0.00 0.00 0.00 0.33 0.00 1.00 0.00 0.00 0.00
R9 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.33 0.00
R10 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.33 0.00 0.00
R11 0.00 0.00 0.33 0.00 0.00 0.66 0.33 1.00 0.33 0.33
R12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 1.00 1.00
R13 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 1.00 0.66
R14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
R15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 1.00
R16 0.33 0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00 0.33
R17 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R18 0.33 0.33 1.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00
R19 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.33
R20 0.00 0.00 0.00 0.33 0.00 1.00 0.00 1.00 0.00 0.00
R21 0.00 0.00 0.00 0.33 0.00 1.00 0.00 1.00 0.00 0.00
R22 0.33 0.33 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

their position to advantage, in the same way that actors who are between other actors
have a high betweenness centrality score. 6 Clearly cores that overlap sufficiently could
be merged into single cores. These observations suggest that a 2-mode analysis of the
data based upon membership in the cores and peripheries may help provide a better
picture of the overall pattern of connections in a social network.

We therefore define the CP matrix: a 2-mode matrix in which the rows are actors, the
Ž .columns are cores, and the cells indicate the relationship the coreness of the row actor

with respect to the column core. For example, a clique analysis of the Taro data yields
10 cliques each containing three actors. Since each clique contains exactly three actors
the CP scores for each actor with relation to each clique are either 0, 0.33, 0.66 or 1.0,
as shown in Table 2. The CP matrix was then submitted to the correspondence analysis

Ž .procedure in UCINET 5 for Windows Borgatti et al., 1999 . The resulting plot is given
in Fig. 4.

The points labeled with an R correspond to the actors, the points labeled with a C
correspond to the corerperiphery structures. Three or four basic groups are visible,
suggesting that some of the corerperiphery structures are essentially the same. The map
clearly indicates which actors are associated with which aggregated corerperiphery
complexes.

6 We are grateful to an anonymous referee for suggesting this line of reasoning.



( )M.G. EÕerett, S.P. BorgattirSocial Networks 21 1999 397–407 405

Fig. 4. Correspondence analysis of Taro CP matrix.

The results are roughly consistent with a routine cluster analysis of the clique
co-membership matrix. Such a cluster analysis finds four basic groups, broken out as

Ž . Ž . Ž . Ž .follows: 1,2,3,17,18,22 , 4,5,6,7,11,20,21 , 8,9,10 and 12,13,14,15 . Note that two
actors, 16 and 19, belong to no cliques and are not classified by the cluster analysis. In
constrast, the correspondence analysis of the CP matrix clearly shows which groups
they are primarily associated with, and also provides clues about their secondary
attachments. For example, actor 16 belongs to the periphery of corerperiphery struc-

Ž . Ž .tures 5 lower left and 10 upper right and so is pulled towards toward the center.
Actor 19 is attached to peripheries in the top left group and is visibly drawn in that
direction.

The most striking feature of Fig. 4 is the position of actor 11, which the correspon-
dence analysis places in the center of the space, but which is not singled out in any way
by the cluster analysis. This actor has connections into all four groups and so is very
central to the whole network structure. A betweenness centrality analysis identifies actor
11 as the most central but not clearly distinguishable from other actors, such as actor 7
and actor 17, which have fairly similar scores. What the correspondence analysis of the
CP matrix reveals is that the centrality of these latter actors is derived from their ties
with actors belonging to the same larger groupings, whereas 11 is strategically placed
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between the aggregate groups. This is an important structural feature that the traditional
methods of centrality analysis and clique analysis do not detect.

5. Directed graphs

Although we have developed these methods with undirected graphs in mind, the
concepts can be extended fairly easily to the case of directed graphs. First, we can think
of a periphery as the union of two peripheries: an out-periphery and an in-periphery. The
out-periphery consists of all the actors that receive arcs from the core while the
in-periphery consists of all the actors that send arcs to the core. We can similarly define
a k-in-periphery and a k-out-periphery in the obvious way. And, of course, if we are
particularly interested in status-based corerperiphery structures, we would probably
want to pay the most attention to the k-in-periphery.

With directed data we can also define the concept of a strong periphery, which is the
intersection of the in-periphery and out-periphery. Similarly, concepts such as peripheral
density can be extended to in-periphery density and out-periphery density.

6. Conclusion

We have explored ways of defining the peripheries of cohesive subsets. Depending
on the parameters chosen, the peripheries can range from small, exclusive sets closely
tied to just one subgroup to large inclusive sets that include every node in the network
that is not in the cohesive subset. We have also discussed attributes of peripheries, such
as their density. For example, we have speculated that when the density of a periphery is
much lower than the background density of the network as a whole, it could be
indicative of a status-based corerperiphery structure in which all actors seek ties with
core members and avoid ties with periphery members. We have then shown how this
information can be combined to provide a deeper analysis of the pattern of connections
in the network as a whole. This technique provides the analyst with extra tools which
help them understand the complex structures concealed within network data.

Implicit in this paper is the notion that once we identify a cohesive subgroup, we
induce a partition of all nodes in the network into three classes: the members of the
subgroup, the periphery ‘‘belonging to’’ that subgroup, and the rest of the nodes in the
network. This contrasts with most of the literature on cohesive subgroups, which usually
divides nodes into two classes: ingroup and outgroup. We believe that thinking in terms
of the tripartite division may make it easier to design algorithms to detect cohesive
subgroups, at least when the procedure for constructing the periphery is independent of
the procedure for constructing the subgroup, as we present in the earlier part of this
paper. Otherwise, the algorithm for detecting cohesive subgroups must trade-off cohe-

Žsiveness or other key criteria with coverage i.e., obtaining just a few but fairly large
.subgroups .
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