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Abstract

General methodology is developed here to deal with the association between a a binary variable
and network connections with or without confounding covariates. Also the case when the network
is observed at several time periods is treated. As an application we consider the diffusion of organic
farming in the province of North Karelia in Finland. It turns out that organic farms are more
clustered than would be expected under pure random allocation. The neighborhood effect remains
when adjusting for the production lines of the farms. The spatio-temporal analysis shows that new
adopters are more often found within the neighborhoods of each others and of earlier adopters.
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1. Introduction

A common approach to the study of adoption of innovations within a social system is to
regard adoption as the outcome of an information-seeking process that seeks to decrease
the uncertainty relating to the adoption decision(Burt, 1987, p. 1288; Valente, 1995, p. 5).
As Rogers (1995, p. 304)argues, a key method for individuals of obtaining information
is communication with those around them, particularly those who have already faced the
same decision. Hence, the adoption of innovations has come to be seen as the outcome of
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a spatial and social diffusion process, whatHägestrand (1953), in a seminal paper, called
the ‘neighborhood effect’.

Starting in the 1940s, geographers have accumulated a set of statistical methods for
examining diffusion. The general approach is as follows. If adoption is a function of dif-
fusion among neighbors (whether defined socially, spatially or some combination), then
pairs of adopters should be found more frequently among neighbors than we would ex-
pect by chance. In contrast, if adoption is principally a function of independent decisions
based on, say, economic factors (e.g. government subsidies) or individual dispositions,
then we would expect adopters to be uniformly randomly distributed with respect to being
neighbors. To test for diffusion, then, we can distribute the ‘is an adopter’ property ran-
domly among individuals and then count the number of adopter pairs that are neighbors.
Repeating this many times, we can calculate how rare an event the observed number of
connected adopter pairs is under the uniform distribution of adopters. This basic approach
underlies the join-count statistic ofMoran (1948), as well as the autocorrelation statis-
tics developed byMoran (1950)andGeary (1954). In an epidemiological context,Mantel
(1967)proposed a general quadratic statistic to measure the relation between two distance
matrices and encouraged the use of simulation methods to assess its significance. Sub-
sequently, the Mantel statistic was independently re-invented several times (seeWhaley,
1983; Good, 1994) and used in a diversity of fields from epidemiology to archaeology
and sociology (where it is known as QAP). An impressive set of references is found in
Good (1994).

The objective of the present paper is to extend this basic body of work in two key direc-
tions. The first direction deals with the issue of confounding covariates. Potential adopters
have varying attributes (e.g. level of education) which may affect their propensity to adopt
an innovation. This becomes problematic when these same features affect who interacts
with whom. Then, the observed association between being ‘neighbors’ and willingness
to adopt innovations can be accounted for by these confounding factors. We examine two
cases: one in which the covariates are entirely categorical, and the other in which continuous
covariates are also present. We show that in the purely categorical case, we can eliminate
the confounding effects by modifying the simulations so that the random allocations of
the ‘is an adopter’ property are performed separately within categories. For the continuous
covariate case, we use logistic regression to make the covariate adjustments.

The second direction deals with modeling the adoption process over time. Cross-sectional
tests, even with the ability to control for covariates, provide only weak evidence for diffusion.
While diffusion implies clustering, clustering in itself does not prove diffusion. Stronger
evidence is provided if new adopters at any given time are neighbors of older adopters. We
provide a relatively simple statistic for assessing this combined spatio-temporal effect.

We illustrate our methods by examining the adoption of organic farming from 1990 to
1999 among farmers in the province of North Karelia in Finland. The data were obtained
from records kept by the Finnish Ministry of Agriculture and Forestry covering agricultural
land use, livestock information, and most importantly, geographical location. Thus, we
use physical distance among farm houses to define farmer’s neighborhoods. Adoption of
organic farming in Finland is occurring in a context in which clear economic incentives lead
farmers to consider the adoption, creating a plausible case for the null model of adoption
not based on social diffusion processes.
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The article is organized as follows. First, inSection 2, we define a basic association
measure. Its permutation distribution is derived inSection 3. Sections 4 and 5discuss
how to adjust the permutation distribution for categorical and continuous covariates. In
Section 6, we extend the approach to longitudinal data. The article concludes with an
empirical application of the methods to the diffusion of organic farming in Northern Karelia,
Finland, in 1990–1999. The results have implications for institutional organizational theory
(Meyer and Rowan, 1977; Scott, 1991).

2. Measuring network association

Let us assume that we have a population ofN individuals labeled as 1,2, . . . , N. Each
individual is classified into one of two classes, the adopters which we are interested in and
the non-adopters. This is denoted by the variablesxi taking the value 1 for an adopter and 0
for a non-adopter. Assume further that each pair(i, j) is either connected or disconnected.
The connection is directional, i.e.i may be connected toj, i → j, butj is not necessarily
connected toi, j � i.

The connections are defined through the variables

δij =
{

0, if i � j,

1, if i→ j.

When put into a matrix� = (δij), they define a directed graph.
In many applications, as in ours, the connection means geographical nearness, and�

determines the neighborhoods for all individuals. The neighborhood ofi consists of all
individuals j with δij = 1. In other contexts the connection may be social rather than
geographical, e.g.δij can define whetheri countsj as his/her friend. Also the geographical
neighborhood is definable in various ways. If we have subregions instead of individuals, the
neighbors ofiare naturally defined to be those having linked by a join, i.e. having a boundary
of positive length in common. If the individuals are points on a plane the natural definition
employs circular neighborhoods consisting of all those living within a certain distance. The
drawback here is that if the density of points varies greatly, the radius appropriate in the dense
part may lead to a large number of individuals in having no neighbors in a sparse part. In
order to avoid this, one could define the neighborhood as consisting ofk nearest neighbors.
A compromise between these two is to take the individuals that are within the radius which
is the distance to the nearest neighbor plus some fixed constant. This is the definition that
we have employed in our application. Nevertheless, we stress that the following discussion
applies to whatever definition for the neighborhood is adopted.

Next we introduce the in- and out-degrees of the graph. The in-degree ofj is qj = ∑
i δij

(the number of edges directed toj) and the out-degree ofi is ki = ∑
j δij (the number of

edges directed fromi). In our applicationki gives the number of the neighbors the farmi
possess, whileqj is the number of the neighborhoods the farmj belongs to. If we assume
that the individuali is influenced by its neighbors, thenki is the measure how muchi is
influenced, whileqj measures how influentialj is. The interpretation may also be vice versa
depending on the application.



178 J. Nyblom et al. / Social Networks 25 (2003) 175–195

The column vectork with componentski is obtained by the matrix multiplicationk = �1,
where1 is the column vector of ones. Accordingly the vector of in-degrees isq = �′1,
where the prime stands for transposing a matrix. We have, of course, the identity

∑
ki =∑

qj = ∑∑
δij. Denote this sum, the total number of connections, byS. In matrix terms

S = k′1 = q ′1 = 1′�1. In the special case of an undirected connection, i.e.i→ j implies
j → i,� is symmetric andk = q. This applies to circular neighborhoods mentioned earlier.
When the neighborhoods are defined as thek nearest neighbors we haveki = k for eachi.

The interesting question we now wish to investigate is whether the adopters are clustered
in a sense that they are more likely to be connected with one another than what might happen
under purely random distribution. A simple measure for network association is

Q11 =
N∑
i=1

N∑
j=1

δijxixj = x′�x. (1)

ClearlyQ11 gives the number of pairsi→ j in which both are adopters. Note that ifi→ j

andj → i, then this pair is counted twice.
The association between the non-adopter pairs is analogously

Q00 =
N∑
i=1

N∑
j=1

δij(1 − xi)(1 − xj) = (1 − x)′�(1 − x).

The remaining two associations areQ01 = (1 −x)′�x andQ10 = x′�(1 −x). A direct
calculation shows that

Q10 = k′x −Q11,

Q01 = q ′x −Q11,

Q00 = 1′�1 − k′x − q ′x +Q11.

(2)

We can collect these into a 2× 2 table as follows.

(3)

If Q11 is high indicating association between adopters, it does not imply that there is also
association between the non-adopters in the sense ofQ00. Eq. (2)shows that the increase
in Q11 may be compensated by the increase ink′x and q ′x. These latter statistics are
large when the adopters are more likely to be found among those having large number of
neighbors (largek′x) or belonging to many neighborhoods (largeq ′x).

We conclude this section by relating our association measureQ11 in (1) to the previous
literature. Firstly, it is a special case of Mantel’s general quadratic statistic(Mantel, 1967)∑∑

δijyij. (4)

The interpretation is that we measure closeness between two individuals in two different
manner. In Mantel’s applicationδij measures spatial closeness andyij temporal closeness of
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two individuals having the same disease. In our applicationδij continues to measure spatial
closeness but being zero-one valued. The temporal closenessyij is replaced byxixj, i.e.
with a binary variable expressing whether the individualsi andj are both adopters or not,
a kind of closeness too.

Again, if we are dealing with subregions instead of individuals the statisticQ11 is seen to
be a join count statistic proposed byMoran (1948)(see alsoCliff and Ord, 1981, Chapter 1)
with the exception that the connection matrix is not necessarily symmetric. Later,Moran
(1950)proposed a closely related spatial autocorrelation

I = S−1∑N
i=1

∑N
j=1 δij(xi − x̄)(xj − x̄)

N−1
∑N
i=1(xi − x̄)2

.

After some algebra we find that

I = (M/N)Q00 + [(N −M)/N]Q11

S(M/N)(1 −M/N) − 1

N
,

which shows that Moran’sI is a kind of weighted sum ofQ00 andQ11. It receives a high
value also when non-adopters are clustered but adopters are not. Note also thatI11 = I00 =
−I10 = −I01 with an obvious subscript notation. Therefore, we find some advantage to use
the measureQ11 which is directly related to adopters. Another closely related statistic toI

is proposed byGeary (1954).

3. Permutation test

From now on we concentrate onQ11 defined in(1). For simplicity let us denoteQ11 =
Q. It is plain that under clusteringQ should take larger values than under no clustering.
Assume now that the observationsx1, . . . , xN are realizations of the Bernoulli random
variablesX1, . . . , XN . Then the null hypothesis of no clustering can be stated formally as

H0 : Xi ∼ind Ber(θ), i = 1, . . . , N,

i.e. theXi are independent withP(Xi = 1) = θ (unknown). Under the null hypothesis
M = ∑

Xi is a sufficient statistic. The conditional distribution ofQ givenM = ∑
Xi is

free fromθmaking it possible to compute the exact significance probability (p-value). Start
with any sequencea1, . . . , aN with N −M zeros andM ones. Then

P
(
X1 = a1, . . . , XN = aN

∣∣∣∑Xi = M
)

= 1(
N

M

) .

Thus, the conditional distribution ofQ givenM = ∑
Xi is

P
(
Q ≤ c

∣∣∣∑Xi = M
)

= #{∑∑
δijaiaj ≤ c}(
N

M

) ,
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where the symbol ‘#’ stands for “the number of”. Thus, the probability is the proportion of
those sequencesa1, . . . , aN with N −M zeros andM ones yielding a value at mostc for
Q. Because a complete enumeration is impossible even for moderateM andN, a practical
solution is found by taking a random sample from the sequencesa1, . . . , aN . This can
be simply accomplished by a random permutation of the observed valuesx1, . . . , xN . The
(random) significance probability orp-value based onB random permutations is then

p = #{Qπ ≥ Q}
B

,

whereQπ = ∑∑
δijx

π
i x
π
j with (xπ1 , . . . , x

π
N) being a random permutation of(x1, . . . , xN).

The first two moments are obtained by a direct calculation. Plainly

E(xπi ) = P(xπi = 1) = M

N
.

Because

E(xπi x
π
j ) = P(xπi = xπj = 1) = M(M − 1)

N(N − 1)
, i �= j,

we obtain, recallingδii = 0, that

E(Qπ) =
∑∑

δijE(x
π
i x
π
j ) = SM(M − 1)

N(N − 1)
.

Note that the expected frequency is the product of the numbers of all directed connections
S and of all ordered pairsM(M− 1) of adopters divided by the number of all ordered pairs
N(N − 1).

A direct calculation yields

var(Qπ)= p1(S + R)+ p2[(k + q)′(k + q)− 2(S + R)]
+p3[S2 + S + R− (k + q)′(k + q)] − p2

1S
2,

where

pk = M(M − 1) · · · (M − k)
N(N − 1) · · · (N − k) , k = 1,2,3,

R = ∑∑
δijδji.

Note thatR equals the number of pairs for which the relation is symmetric (each pair is
counted twice!). The formula could befound also inCliff and Ord (1981, p. 20), if we first
symmetrize theδij. Cuzick and Edwards (1990)consider the asymmetric case as we do but
their neighborhoods are defined as thek nearest neighborhoods. Also the general formulas
of Mantel (1967)are applicable.

We may expect that under some conditions on the connection matrix� the permutation of
Qπ tends to a normal distribution (for a discussion of this matter, seeCuzick and Edwards,
1990). Then we can computeZ = [Q−E(Qπ)]/√var(Qπ) and compare it to the standard
normal distribution. However, this asymptotic result is doubtful, and our simulations confirm
it, when the adopters are rare, i.e. for smallM/N. A common statistical model for rare
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events is the Poisson distribution. Therefore, we might proceed under the assumption that
Qπ follows a Poisson distribution with meanE(Qπ). But in Poisson model variance equals
to mean, and in practice we have found that var(Qπ) is often considerably larger than
E(Qπ). The negative binomial distribution is a simple alternative to Poisson model when
variance exceeds mean.

The negative binomial probabilities are given by the formula

f(k; r, q) =
(
r + k − 1

k

)
qk(1 − q)r, k = 0,1, . . . ; r > 0, 0< q < 1.

The distribution has a natural interpretation for integerr, but any positiver defines a proper
distribution (e.g.Feller, 1957, pp. 155–156). The computation of negative binomial proba-
bilities is included in many statistical packages. The expectation and variance of a negative
binomial variable arerq/(1−q) andrq/(1−q)2, respectively. Hence, if var(Qπ) > E(Qπ),
we equate the mean and variance of the negative binomial distribution and the permutation
distribution as

E(Qπ) = rq

1 − q , var(Qπ) = rq

(1 − q)2 .

These yield

q = var(Qπ)− E(Qπ)
var(Qπ)

, r = [E(Qπ)]2

var(Qπ)− E(Qπ) .

Then thep-value is obtained with theser andq as the tail probability

∞∑
k=Q

f(k; r, q) = 1 −
Q−1∑
k=0

f(k; r, q).

We want to emphasize that the use of the negative binomial distribution is based on empirical
findings rather than on theoretical arguments.

In some applications, those individuals that have many neighbors or belong to many
neighborhoods are more exposed to innovations. A test for this can be based on the marginal
countsk′x andq ′x of theTable 3). Their first two moments are needed for normal approx-
imation and given below. The expectations are equal and satisfy

E
(∑

kix
π
i

)
= E

(∑
qjx

π
j

)
= SM

N
.

The variances and the covariance are

var
(∑

kix
π
i

) = M(N −M)
N(N − 1)

∑
(ki − k̄)2,

var
(∑

qjx
π
j

)
= M(N −M)
N(N − 1)

∑
(qi − q̄)2,

cov
(∑

kix
π
i ,
∑
qjx

π
j

)
= M(N −M)
N(N − 1)

∑
(ki − k̄)(qi − q̄),

wherek̄ = q̄ = S/N.
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4. Adjusting for categorical covariates

It may happen that clustering occurs because of some confounding variable. In our ap-
plication the adopters are organic farmers. Suppose that organic farming is more popular
among crop producers, and that the crop producers are spatially clustered. Then the apparent
clusters of organic farms may be explained by this association.

In general terms, assume now that the individuals divide intoG disjoint groups or strata.
Let thegth group haveNg individuals,N1+· · ·+NG = N. Also, let us modify our notation
by introducing double subscripts withxgi referring to theith individual in thegth group and
further, write

Q =
G∑
g=1

G∑
h=1

Ng∑
i=1

Hh∑
j=1

δ
gh
ij xgixhj,

whereδgh
ij defines the connection between theith individual from thegth group to thejth

individual from thehth group. Despite the complicated notation theQ-statistic is computed
in exactly the same manner as in the case of no covariates. Adjustment for the covariates is
made via a change of the distribution under the null hypothesis.

The null hypothesis of no clustering but allowing for varying levels over the groups
formalizes to

H0 : Xgi ∼ind Ber(θg), i = 1, . . . , Ng, g = 1, . . . ,G. (5)

The variablesxgi are the observed values ofXgi. The clustering of the adopters is continued to
measure withQ, but when calculating its significance we wish to eliminate the confounding
grouping effect by conditioning on the group totals

Mg =
Ng∑
i=1

Xgi, g = 1, . . . ,G.

They are sufficient for the model(5). This leads, by the similar reasoning as in the previous
section, to the conclusion that all the permutations within the groups are equally likely.
Hence, thep-value based onB random permutations is

p = #{Qπ ≥ Q}
B

,

where

Qπ =
G∑
g=1

G∑
h=1

Ng∑
i=1

Hh∑
j=1

δ
gh
ij x

π
gix
π
hj

with xπg1, . . . , x
π
g,Ng

being a permutation ofxg1, . . . , xg,Ng , g = 1, . . . ,G. Furthermore, the
permutations are independent in different groups. PreviouslyPike and Smith (1974)have
suggested similar procedure in case–control studies in epidemiology, where a number of
cases and controls matched by adjusting for age, sex, etc. The method of permuting within
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categories is well known in the linear model context (e.g.Noreen, 1989, Chapter 2.7) and
Good (1994, Chapter 4.3).

The expected value ofQπ is

E(Qπ) =
∑∑
g �=h

Sgh
MgMh

NgNh
+
∑

Sgg
Mg(Mg − 1)

Ng(Ng − 1)
, (6)

because

E(xπgix
π
hj) =




Mg(Mg − 1)

Ng(Ng − 1)
, for g = h,

MgMh

NgNh
, for g �= h.

The exact formula for the variance is complicated and thus omitted(Pike and Smith, 1974).

5. Logistic regression in adjusting for covariates

The case with two categorical covariates with groupsC1, . . . , CG1 andD1, . . . , DG2

can be treated as in the previous section by introducing the intersectionsCi ∩ Dj as a
new grouping scheme. Clearly, this can be generalized to arbitrary number of categorical
covariates. The case of continuous covariates may sometimes be handled by discretizing
it into disjoint groups. But these devices are not always practical. With several categorical
covariates the number of intersections increase rapidly while the number of individuals in
them become small. The discretizing device is, in any case, arbitrary.

In order to avoid the above drawbacks let us assume that under the null hypothesis

Xi ∼ind Ber(θi)

with

log

(
θi

1 − θi

)
= β0 + β1zi1 + · · · + βpzip, i = 1, . . . , N,

i.e. we assume the logistic regression. A good introduction to these models isHosmer and
Lemeshow (1989). The covariateszi1, . . . , zip, i = 1, . . . , N, can be continuous or categor-
ical dummies. In case of categorical dummies (including all interactions if necessary), we
are back in the situation of the previous section. Denotez10 = · · · = zN0 = 1. Then the
likelihood function at the observed dataXi = xi, i = 1, . . . , N, is

N∏
i=1

θ
xi
i (1 − θi)1−xi = exp


 p∑
j=0

βj

N∑
i=1

xizij −
∑

log(1 + eβ0+β1zi1+···+βpzip)


 .

The factorization criterion(Lehmann 1994, p. 54)yields sufficient statistics

Mj =
N∑
i=1

Xizij, j = 0, . . . , p.
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Again, the conditional distribution ofX1 . . . , XN givenM0, . . . ,Mp, is free from the nui-
sance parametersβ0, . . . , βp. The test statisticQ remains as such, but the significance is ob-
tained by enumerating all permutationsxπ1 , . . . , x

π
N with the restrictionsMj = ∑N

i=1 x
π
i zij.

Then we count the relative number of those values not below the observed one.Mehta et al.
(2000)give references to fast numerical algorithms. Needless to say that only small data
sets can be analyzed by exact methods. Not only the exact solution but also simulation leads
to difficulties. The straightforward rejection algorithm is highly inefficient. A practical so-
lution was recently given byMehta et al. (2000). Yet, their method seems to be unsuitable
for large data sets as ours.

For large data sets we propose the following approximate, unconditional method. If
we knew the parametersβ0, . . . , βp we could simulate the unconditional distribution of∑∑

δijXiXj. But becauseβ0, . . . , βp are not known we generate random variables from
the estimated model, i.e. takeX∗

i ∼ind Ber(θ̂i) with

log

(
θ̂i

1 − θ̂i

)
=
∑
j

β̂jzij, i = 1, . . . , N,

where theβ̂j are the maximum likelihood estimates of theβj under the null hypothesis.
Then computeQ∗ = ∑∑

δijX
∗
i X

∗
j . This method can be termed the parametric bootstrap

(Efron and Tibshirani, 1993). With B bootstrap samples the estimatedp-value is

p = #{Q∗ ≥ Q}
B

,

i.e. the number of bootstrap samples leading to the excess of the observed valueQ.
The expected value ofQ∗ (over bootstrap distribution) is

E(Q∗) =
∑∑

δijE(X
∗
i )E(X

∗
j ) =

∑∑
δijθ̂iθ̂j. (7)

By a direct calculation the variance is seen to be

var(Q∗)=
∑
(δij + δijδji)θ̂i(1 − θ̂i)θ̂j(1 − θ̂j)+

∑
i


∑

j

(δijθ̂j + δjiθ̂j)



2

θ̂i(1 − θ̂i).

Because the moments depend basically on the estimateβ̂ = (β̂0, . . . , β̂p)
′, we denote

shortlyE(Q∗) = µ(β̂) and var(Q∗) = σ2(β̂). Under mild restrictions on the valuesδij the
bootstrap distribution ofQ∗ tends to a normal distribution, and thus the standardized variable
(Q∗−µ(β̂))/σ(β̂) is approximately normal with zero expectation and unit variance. Again,
with µ(β̂) < σ2(β̂) andµ(β̂) small, the negative binomial approximation can be tried.

Inference based on logistic regression with bootstrap samples is, of course, possible for all
confounders whether categorical or not. But the solution remains approximate irrespective
how largeB, the number of samples, is chosen. On the other hand the procedure ofSection 4
becomes exact whenB → ∞. Therefore, we prefer the latter method whenever possible,
especially if some of the categories contain a small number of individuals.
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6. Testing association over time

When dealing with the diffusion of innovation, as in our application, the non-adopters
become adopters over time. If the change-points are recorded, we can study their dynamics.
Unfortunately, exact description of such dynamics entails somewhat complicated notation.
First, define

xti =
{

1, if the individualibecomes adopter at timet

otherwise, t = 1, . . . , T.
(8)

We assume that there are no backward changes, i.e. no adopter changes back to a non-adopter.
Then, with fixedi, the sequencex1i, . . . xTi can be regarded as an indicator sequence giving
the timing for a change-point to an adopter. If the change occurs att, thenxti = 1 and
xsi = 0 for s �= t. If x1i = · · · = xTi = 0, the individuali stays as a non-adopter for the
whole period 1, . . . , T . Thus, the sum

yti = x1i + · · · + xti

describes the status of the individual att. It is one for an adopter and zero for a non-adopter.
The set

Gt = {i|yti = 0}
defines those individuals that are not adopted the innovation tillt. The number of non-
adopters att is

Nt =
∑
i

(1 − yti).

For completeness setN0 = N, i.e. at the beginning all individuals are non-adopters. The
number of new adopters att isMt = ∑

i xti. When considering the transition fromt to t+1,
the non-adopters att,Nt in number, make up the group from which the new adopters,Mt+1
in number, arise. Clearly the recursionNt+1 = Nt −Mt+1 holds.

With the above notation the association att can be tested with
∑∑

δij yti ytj which is
simplyQ11 from (1) written at timet. But a more interesting question is whether there is
association between successive time periods. First, consider two successive time periodst

and t + 1. The old adopters att + 1 are those withyti = 1 and the new ones those with
xt+1,i = 1. The association between the new and old adopters is measured by∑∑

δijxt+1,iytj. (9)

This reflects our assumption that the individuali is influenced by its neighbors but can
influence only those whose neighbor it is. That is, ifδij = 1 then farmj influences farmi.
The choice

∑∑
δijytixt+1,j would lead to the reverse interpretation.

Although we cannot speak of the influence of the new adopters to potential new adopters
at the same time pointt+1, it is, nevertheless, meaningful to assume that new adopters may
cluster around themselves provided that the transition time fromt to t + 1 is long enough.
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In our application, the interval is one year, offering plentiful chances for mutual contacts.
Then, naturally, the measure between the new adopters is

∑∑
δijxt+1,ixt+1,j (10)

againQ11 from (1) applied to new adopters att. The measures(9) and(10) could be used
separately but we prefer their sum

Qt =
N∑
i=1

N∑
j=1

δijxt+1,iytj +
N∑
i=1

N∑
j=1

δijxt+1,ixt+1,j, (11)

Qt =
∑
i∈Gt

N∑
j=1

δijxt+1,iytj +
∑
i∈Gt

∑
j∈Gt

δijxt+1,ixt+1,j, (12)

which combines the association measures between old and new adopters and that within
new adopters.Eq. (12)follows from the fact thatxt+1,i = 0, if i has adopted the innovation
beforet + 1, or with our notationi /∈ Gt . This formula is needed when permutations are
performed. We remind thatQt is related to the step fromt to t+ 1. Note also thatQt is not
a special case of Mantel’s statistic(4).

The hypothesis of no space-time association betweent andt + 1 may be stated in terms
of the random variablesXt+1,i conditioned on the observed valuesyti, as follows

Xt+1,i =
{

0, i /∈ Gt,
Xt+1,i ∼ind Ber(θt), i ∈ Gt.

Again, arguing conditionally on the sum

Mt+1 =
∑
i∈Gt

Xt+1,i

the significance ofQt is found from the permutation distribution of

Qπt =
∑
i∈Gt

∑
j

δijx
π
t+1,iytj +

∑
i∈Gt

∑
j∈Gt

δijx
π
t+1,ix

π
t+1,j,

where the valuesxπt+1,i are obtained by randomly permutingxt+1,i, i ∈ Gt . The valuesyti

are treated fixed. The expectation is

E(Qπt ) = Mt+1

Nt

∑
i∈Gt

∑
j

δijytj + Mt+1(Mt+1 − 1)

Nt(Nt − 1)

∑
i∈Gt

∑
j∈Gt

δij,
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The variance is found by direct calculation

var(Qπt )= (pt0 − pt1)
∑
i∈Gt

(zti − z̄t)2

+ 2


(pt1 − pt2)

∑
i∈Gt

(kti + qti)zit + pt2StStz − pt0pt1StSzt




+ (pt1−2pt1+pt3)(St+Rt)+(pt2 − pt3)
∑
i∈Gt

(kit + qit)
2 + (pt3 − p2

t1)S
2
t

with

ptk = Mt+1(Mt+1 − 1) · · · (Mt+1 − k)
Nt(Nt − 1) · · · (Nt − k) ,

St = ∑
i∈Gt

∑
j∈Gt δij,

Rt = ∑
i∈Gt

∑
j∈Gt δijδji,

kti = ∑
j∈Gt δij, i ∈ Gt,

qtj = ∑
i∈Gt δij, j ∈ Gt,

zti = ∑
j δijytj, i ∈ Gt.

For easy reference, we give the algorithm as follows.

1. For every individuali = 1, . . . , N find the timet wheni changes to an adopter. Then set
xti = 1 andxsi = 0 for all s �= t. If i stays non-adopter setxti = 0 for all t = 1, . . . , T .

2. Compute the cumulative sumsyti = x1i + · · · + xti, t = 1, . . . , T , i = 1, . . . , N.
3. Find the index setsGt = {i | yti = 0}, i.e. the non-adopters att, t = 1, . . . , T .
4. Repeat the steps 5–7 fort = 2, . . . , T .
5. Compute the observed test statistic.

Qt =
∑
i∈Gt

∑
j

δijxt+1,iytj +
∑
i∈Gt

∑
j∈Gt

δijxt+1,ixt+1,j.

6. Randomly permute the indicesi onGt and compute

Qπt =
∑
i∈Gt

∑
j

δijx
π
t+1,iytj +

∑
i∈Gt

∑
j∈Gt

δijx
π
t+1,ix

π
t+1,j.

7. Thep-value for the spatio-temporal association betweent andt + 1 is

#{Qπt ≥ Qt}
B

,

whereB is the number of random permutations.

A natural overall test statistic is obtained by the sum
∑T−1
t=1 Qt . Repeating the argument

for simultaneous association between new adopters discussed above, and applying it to the
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first adopters att = 1 leads to the association measure

Q =
N∑
i=1

N∑
j=1

δijx1ix1j +
T−1∑
t=1

Qt.

Let us develop this formula further. Using(11)and the definition ofyti together we have

Q =
N∑
i=1

N∑
j=1

δijx1ix1j +
T−1∑
t=1

∑
i

∑
j

δijxt+1i(yt,j + xt+1,j) =
N∑
i=1

N∑
j=1

δij

T∑
t=1

xtiytj.

Now we are ready to giveQ a clear interpretation. Suppose that bothi andj have adopted
the innovation at some time point 1, . . . , T . Further, suppose thati adopts the innovation at
s. Thenxsi = 1 andxti = 0 for t �= s yielding

∑T
t=1 xtiytj = ysj. Becauseysj is 1 if j adopts

the innovation not later than ats, we can rewrite

Q =
∑∑

δijvij, (13)

with

vij =
{

1, if j has adopted the innovation not later thani,

0, otherwise.
(14)

Note thatQ in (13) is of Mantel’s form(4).
The appropriate null hypothesis of no temporal association can be defined by first speci-

fying the initial distribution for theX1i

X1i ∼ind Ber(θ1), i = 1, . . . , N,

and then the conditional distributions for theXti given the past valuesX1i, . . . , Xt−1,i as
follows:

Xti = 0 if someXsi = 1, s = 1, . . . , t − 1,

Xti ∼ind Ber(θt) if X1i = · · · = Xt−1,i = 0 t = 2, . . . , T.

In addition, let us defineXT+1,i = 1−X1i−· · ·−XTi. Then the vectors(X1i, . . . , XT+1,i)

are independent draws from the multinomial distribution with class probabilities

P(X1i = 1) = θ1,
P(Xti = 1) = (1 − θ1) · · · (1 − θt−1)θt, t = 2, . . . , T,

P(XT+1,i = 1) = (1 − θ1) · · · (1 − θT ).
Note that the classT + 1 consists of those that remain non-adopters during the whole time
spant = 1, . . . , T . The class frequenciesMt = ∑

Xti (the number of new adopters at
t) are the sufficient statistics. This implies that the permutations of the observed vectors
(x1i, . . . , xT+1,i) are all equally probable under the null hypothesis of no temporal associ-
ation. Therefore, the permutational distribution could be given in terms of these variables.
But we prefer another formula that is more amenable to simulation.
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Defineti to be the time wheni adopts the innovation,i = 1, . . . , N. If i remains non-
adopter, then we setti = T + 1. Let us introduce the unit step functionu(x) = 1 for x ≥ 0
and 0 otherwise. Then by(14)

vij = u(ti − tj)u(T − ti)u(T − tj).
With this notation

Q =
∑
i

∑
j

δiju(ti − tj)u(T − ti)u(T − tj). (15)

The permutation distribution is obtained by permuting the timingsti

Qπ =
∑
i

∑
j

δiju(t
π
i − tπj )u(T − tπi )u(T − tπj ).

Its first two moments can be obtained from the tables ofMantel (1967). We give here only
the expectation

E(Qπ) = S

N(N − 1)

[
T∑
t=1

Mt

(
t∑
s=1

Ms

)
−

T∑
t=1

Mt

]
.

7. Application

7.1. Cross-section data in 1998

Let us start our analysis with the data in 1998. In that year we have full information on
all 3685 farms (of which 250 or 6.8% are organic), including the exact coordinates of their
ranch houses. The neighborhood is defined as those farms having the ranch house within the
distance to the nearest neighbor plus 1 km. Then 156 (= Q11 in the notation ofSection 2
organic farm pairs are observed. The expected number of organic farm pairs under the
randomness hypothesis is 79.1 with standard deviation 12.2. Since the expectation is fairly
large the normal approximation can be tried. This leads toZ = (156− 79.1)/12.2 = 6.29
that is significant at all reasonable levels. The negative binomial approximation does not
contradict this conclusion. The maximum ofQπ in 1000 random permutations was 131
well below the observed value 156. This is in line with the previous approximations.

Because the variance ofQπ is complicated, it might be easier to compute the first two
moments by simulation and then use normal or negative binomial approximation with these
estimates. The computation of moments usually needs less replications than the actual
p-value. Also the accuracy of approximations may be checked against the results from
the simulation. In the present case 1000 simulations yield a mean of 79.45 and a standard
deviation of 12.36. To get a better understanding the accuracy of the approximation suppose
for a moment that we would have observed 110 instead of 156. Then the normal deviate
is 2.47 yieldingp = 0.007. The negative binomial approximation givesp = 0.011 that is
in a close agreement to the simulatedp = 0.012. WithQ = 120 we would havep-values
0.0005 (normal), 0.0016 (negative binomial) and 0.003 (simulated).
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Table 1
Spatial associations for various variables in 1998

Q Mean S.D. Normal Negative binomial

Organic farms 156 79.1 12.2 0.0000 0.0000
GRAIN 11420 10262 104 0.0000 –
PLANT 3614 3404 80.1 0.0044 –
ANIM1 7577 7094 102 0.0000 –
ANIM2 296 271 23.0 0.14 0.14

Table 2
Associations between organic farming and types of products

χ2 d.f. p Type of association Production (%)a No production (%)b

GRAIN 18.0 1 0.0000 Positive 7.7 3.6
PLANT 71.1 1 0.0000 Positive 10.7 3.7
ANIM1 61.3 1 0.0000 Negative 4.4 11.1
ANIM2 29.3 1 0.0000 Positive 12.8 5.9

a Percentage of organic farms among those farms having the type production.
b Percentage of organic farms among those farms not having the type production.

Having found a significant spatial association between organic farmers we might ask, if
it is due to the types of products they produce which might be spatially correlated. We made
four dichotomous variables GRAIN (grain production), PLANT (other plants than grain),
ANIM1 (pork, beef and/or milk production) and ANIM2 (other animal products). Apart
from ANIM2 they are seen to be spatially correlated (seeTable 1). Treating these variables
separately they all are significantly associated with organic farming (Table 2). Among those
who have grain or other plant production or other animal products, the proportion of organic
farmers is more than twice as high as among the complementary groups. Among milk and
meat producers the association is negative but equally strong.

We wish now to eliminate the possible confounding effects of GRAIN, PLANT, ANIM1
and ANIM2. Because one farm can produce several products or none of the chosen ones,
we have 16 disjoint classes within which we make the random permutations. Thus, the
adjustment is done not only to main effect but also for all interactions. The observed value
remains the same 156, but its expectation from(6) increases to 85.7. In 10000 simulation
all values of the test statistic remain below 156 (the row ”categorical” inTable 3). Thus,
adjusting for the chosen covariates does not remove all spatial autocorrelation.

Table 3
Spatial association of organic farms adjusted for covariates

Type of covariates Q Mean S.D. Normal Negative binomial Simulated

Purely categorical 156 85.7 13.0a 0.0000 0.0000 0.0000
Mixed 156 100 18.8 0.0014 0.0042 0.0033± 0.0015b

Simulations are based on 10000 replications.
a Based on simulations.
b 99% confidence interval.
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It turns out that organic farming is associated with the size of the neighborhoods. The
observed values arek′x = 1284 (out-degrees) andq ′x = 1263 (in-degrees). The expected
value is 1171 for both. The observed values are significantly higher (p = 0.004,0.015,
respectively, by normal approximation). Thus, there seems to be more organic farms in
those parts of the province which are more densely populated (in the sense that farms there
have more neighbors).

The next step is to adjust for both the neighborhood size and production sector effects.
This is done via logistic regression. We use out- and in-degrees together with GRAIN,
PLANT, ANIM1 and ANIM2 as predictors. For simplicity, here we use only the main
effects of the production sector variables. The coefficients of degree predictors are not
significant. This is mainly due their correlation with each other. If we used only one of
them, it would be significant. Because we are not interested in distinguishing their actual
effects but regard their role purely confounding, we decided to adjust for them both. The
bootstrap test ofSection 5is significant (the row ”mixed” inTable 3) showing that the
spatial autocorrelation cannot be attributed to neighborhood size and production types.
Note again that the test statistic stays at the same value 156 but the expectation from(7)
further increases to value 100 and the negative binomial approximation is clearly inside the
confidence interval.

7.2. Time series 1990–1999

Table 4gives the yearly tests for the randomness hypothesis. Before 1995 the number
of organic farmers was too small to indicate any spatial clustering. But from 1995 on, the
randomness hypothesis is rejected in each year. The Monte Carlop-value is computed for the
year 1995 only, because in the other years the normal and negative binomial approximations
show that we would need perhaps millions of replications to get a value exceeding the
observed one.

The theory inSection 6assumes that farmers do not stop farming and that once they
have switched to organic farming, they do not switch back. However, in real life, 22 farmers
quit farming and 5 switched back from organic to traditional methods. The yearly tests in
Table 4are applied to the farms that are present in the data base in the corresponding year.
In the study of the spatio-temporal dynamics we have to simplify things slightly, and we
proceed as follows. We take all farms present in the data base at least once in 1995–1999.
In each year, a farm is organic, inorganic or absent. If a farm is in some years absent but

Table 4
Yearly spatial associations

Year Q Mean S.D. Normal Negative binomial Simulated

1995 35 16.5 5.53 0.0004 0.0031 0.0034± 0.0015a

1996 83 36.7 8.29 1.2 × 10−8 4.1 × 10−6 –
1997 85 36.7 8.29 2.9 × 10−9 1.9 × 10−6 –
1998 147 70.9 11.62 4.7 × 10−10 2.0 × 10−7 –
1999 173 92.2 13.29 6.1 × 10−10 1.5 × 10−7 –

Simulations are based on 10000 replications.
a 99% confidence interval.
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Table 5
Spatial associations between new organic farms and the old ones in two successive years

Years Q Mean S.D. Normal Negative binomial Simulated

1995–1996a 28 13.7 4.37 0.0005 0.0032 0.0028± 0.0014b

1997–1998a 37 24.4 5.87 0.016 0.027 0.0234± 0.0039b

1998–1999a 23 16.3 4.68 0.076 0.098 0.1021± 0.0078b

Overallc 114 63.9 9.16 2.3 × 10−8 8.9 × 10−7 0.0000

Simulations are based on 10000 replications.
a From (12).
b 99% confidence interval.
c From(15).

otherwise inorganic, we keep its status as inorganic also in the years of absence. If a farm
is organic in some year, we keep it organic also in the later years, even if it becomes absent
or switches back to inorganic farming. Before the first appearance as organic the farm is
regarded always as inorganic.

Table 5gives results for testing time dependence between two successive yearst and
t+ 1 based onQt defined in(12). In 1997 there are only 2 new organic farms, which is too
few to allow any inference. The tests, though significant in 1996 and 1998, show increasing
tendency towards nonsignificance. Also the ratios of the observed counts over the expected
ones decrease. They are 2.0, 1.5 and 1.4 in succession. This may be an indication that
the neighborhood effect is diminishing among new adopters. This overall measure, based
on (15), clearly significant, indicates a definite tendency of new organic farms to follow
neighbors who adopted earlier.

8. Discussion

This paper is intended to make both methodological and substantive contributions to study
of the effect of spatial proximity on the adoption of a behavioral practice. The specific case
we treat is the adoption by farmers of organic farming techniques. Some of the models
we present are well known individually; in such cases the contribution of our paper is in
bringing them all together in a single framework with comparable notation. Other models,
such as the combined space-time model, are original.

We began our analysis with a traditional permutation test of spatial autocorrelation,
of the kind well-known to geographers (e.g.Cliff and Ord, 1981). The results showed
unequivocally that organic farms are much more likely to have organic farms as neighbors
than we would expect by chance if adoption of organic methods were independent of
proximity. These results are very much in line with a long string of similar results reported
in the literature, and establish that there is something worth studying here.

What is missing from this general test—and from most previous research of this type—is
a sense of process and time. This approach essentially observes the cumulated outcomes to
date of an unknown process and establishes the unlikeliness of independence from spatial
proximity. But, having done so, we do not know whether we are looking at an influence-type
process (farmeri is influenced by neighborj), or whether there is an unobserved underlying
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variable such as soil conditions that explains the autocorrelation. In addition, assuming that
organic farming is an innovation that could eventually spread to all farms, we were fortunate
that we observed the system at an intermediate point in time when a good number of farms
are organic and a good number were still inorganic, since the traditional cross-sectional
autocorrelation test would have difficulty detecting the spatial effect at the endpoint of the
process, when nearly all farms are organic.

Hence, to go beyond simply establishing spatial autocorrelation, we need the ability to
(a) control for other variables, and (b) examine the interplay of proximity and adoption over
time. In this paper, we have sought to provide both. Our first step was to suggest a method
of controlling for categorical covariates. The basic technique we proposed (restricting per-
mutations within categories of the covariates) is known in the statistical literature, but has
not previously been applied to the study of diffusion. Using this technique, we established
that the spatial autocorrelation among organic farmers could not be explained in terms of
the kinds of products produced by the farms.

We then consider the case of non-categorical covariates. Here, we propose an approximate
logistic regression method. Using this method, we controlled for not only type of production,
but the number of farms that each farm is adjacent to. The result was that the observed spatial
autocorrelation could not be attributed to production type nor the number of neighbors.

The other contribution we make to the study of adoption of innovation is the development
of an approach to examining adoption over time. Consider a hypothetical study in which
we observe that organic farmers at the present time tend to be clustered spatially. Suppose
we now examine the pattern of adoption over time and find that adoptions at timet have
no particular spatial relation to the adopters of previous times. Rather than an influence
process, such a pattern would be more consistent with a “geographic suitability” hypothesis
that says that certain geographical areas have a higher predisposition to acquire organic
farms, and these will appear in random order. In contrast, if the pattern over time is that
new adoptions tend to appear adjacent to farms that recently adopted, this is consistent with
a contagion or influence process from neighbor to neighbor. To test this, we developed an
easily calculated model that tests the null model that adoptions do not tend to occur in farms
adjacent to farms that have already adopted. The test can be calculated year-by-year, or for
all years together. The results showed that, overall, there is a clear tendency for organic
farms to develop adjacent to existing organic farms, supporting the hypothesis of a social
influence process.

Interestingly, the year-by-year test appears to show that this effect is declining over time.
This is consistent with institutional theory(Meyer and Rowan, 1977; Scott, 1991), which
argues that legitimacy is the key factor in adoption of innovation. The argument says that,
in the beginning, conventional norms favor traditional farming techniques, and adoption of
organic techniques is done by a few independent thinkers, along with farmers that come into
close contact with the rebels and are influenced by them. This creates strong spatio-temporal
autocorrelation at the early stages. As more and more farmers adopt, however, organic
farming becomes legitimized and enters the mainstream as a ”normal” option. Once this
occurs, the decision process becomes more of a cost/benefit analysis conducted individually
by farmers, weakening the spatio-temporal diffusive effect (but not necessarily the simple
spatial autocorrelation if there are some regions that are more suitable than others). In
addition to institutional and cultural reasons for the weakening spatio-temporal effect, we
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also have to take into consideration the importance of the agricultural policy in European
Union (Finland has been a member state since 1995). The growing political interest in
organic farming after mid-1990s has led to the development of subsidy programs which
have clearly made organic farming more attractive among farmers with increasing economic
problems(Michelsen, 2001).

It is important to realize that all of the data we have studied in this paper are archival data
obtained from government records. Such data are much less expensive to obtain than survey
data, and the analytical methods we propose allow the researcher to make tests which could
obviate the need for surveys or, on the other hand, provide justification for taking the next
step. In our case, the spatial autocorrelation effect survived controlling for covariates, and
showed a temporal pattern consistent with a social influence process. These results provide
justification for a survey of farmers to understand how they may be influencing each other
to adopt—for example, is it simply that adoption provides a model that neighbors can
copy? Or are organic farmers actively persuading neighbors to join? In order to answer
these questions two of us(Roslakka and Salo, 2001)have conducted a survey among the
organic and inorganic farmers in which we investigate the ways the farmers interact with
and possibly influence and are influenced by their neighbors.

Of course, the methods we propose have limitations. One important limitation of the
spatio-temporal models is that they assume that once an adoption is made, it remains. That is,
no farmer could switch back to inorganic methods. In our application this is not a problem,
since the number of farmers who switched back is insignificant. In other applications,
however, such as consumer purchasing of products, this could constitute a serious limitation.
Another important limitation is that the models assume that the underlying structure of
adjacency does not change over time. Again, this causes us no problems in the case of
farms, but could be a significant factor in applications where adjacency refers to social
relations such as friendship. There, it would not be surprising if the pattern of friendships
changed over time, possibly even as a result of the adoption/non-adoption decision (i.e.
organic farmers become friends as a result of both being organic farmers).
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