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This article introduces a new method for statistically comparing pairs of aggregate
data series. Aggregate data series refers to a set of values, each of which is averaged
or otherwise aggregated across respondents. Themotivating problem is the compar-
ison of aggregate proximity matrices, such as those obtained from pile sort exer-
cises. The standard approach to this problem uses the nonparametric, permuta-
tion-based quadratic assignment program (QAP) technique. However, the null
distribution that QAP is based on is inappropriate for comparing subsamples of a
data set andmay lead tomisleading conclusions. The newmethod can yield different
results than QAP, results more in line with researchers’ intuition. Furthermore, the
method can be applied to a variety of data types beyond those appropriate forQAP.

Suppose we ask male and female respondents to rate the similarity of all
pairs of items in a cultural domain (Weller and Romney 1988). We average
the data separately for men and women and obtain two aggregate similarity
matrices, one for each gender. We want to compare the matrices to see if the
genders perceive the domain differently. Typically, we are interested in a
measure of the magnitude of similarity (or difference) between the matrices
and a significance test (typically a statement of the likelihood of obtaining
such a high level of similarity or difference given independence of gender
and perception). I am particularly interested in the significance test.

The thesis of this article is that the approach most commonly used in these
cases is inappropriate and leads to the wrong conclusion. I introduce a new
method, based on permutation techniques (Edgington 1969; Good 1994),
that is appropriate for comparing any two aggregate data series across a priori
groups. By aggregate data series, I mean a set of values for each respondent
(e.g., the cells of a proximity matrix), each of which is averaged or otherwise
aggregated across respondents.
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A few words on the kind of significance test desired are in order. Classical
significance tests are fundamentally concerned with evaluating the probabil-
ity of obtaining a sample statistic (e.g., correlation) as large as the one actu-
ally observed due to sampling error, given that in the population the statistic
is zero. In other words, the classical significance test is fundamentally about
estimating the probability that a sample is deviant if the variables in question
are independent in the population (Noreen 1989). This is undeniably useful
in the case where we have a random sample and are interested in generalizing
to a defined population from which the sample was taken.

However, the cases that I am concerned with are ones in which the sample
is not necessarily random or the data are not drawn from a sample at all. Here,
the significance we are interested in refers only to the probability of obtaining
a test statistic as large as the one actually observed, given that the values of
the variables are assigned independently of each other.

For example, suppose we administer a trivia test to boys and girls and find
that the average score for the boys is eighty-five and the average score for the
girls is seventy-nine. Does this mean that in this group, knowledge is a func-
tion of gender? It looks like it, but before answering we should remember that
any division of the sample into two groups will yield somewhat different
averages, even if the basis for the division had nothing to do with knowledge.
If we divided the group by shoe color, for instance (light and dark), one group
would almost surely have a higher mean than the other—in fact, it is virtually
impossible to divide a sample into groups such that the mean score for each
group is exactly the same.

So the real question is, How likely would it be to find a difference as large
as actually observed (six points, in our example) if we divided the sample
randomly (or more precisely, without regard for test scores)? If individual
variability in test scores is high, then large differences in the means of ran-
domly selected groups become relatively likely. To evaluate the observed
difference we need to calculate this probability, and it is this probability that
we refer to as the significance of the test statistic.

The need for a nonparametric procedure to provide a significance test for
correlations between proximity (or other 1-mode) matrices has been noted
before, and a standard solution, known as the quadratic assignment program
(QAP) (Mantel 1967; Hubert and Schultz 1976), has wide currency today.
For example, Boster and Johnson (1989) used QAP to compare pile sorts of
fish by novice and expert fishermen. Weller (1984) used QAP to compare
pile sorts of illnesses by U.S. and Guatemalan women. Johnson, Mervis, and
Boster (1992) used QAP to compare proximities generated by children and
adults. And Boster (1987) used the method to compare judged similarities of
birds by naïve respondents and ornithologists. However, I believe that using
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QAP to compare aggregate data is inappropriate and can yield seriously mis-
leading results. In this article, I present evidence of the problem and offer a
possible solution.

ILLUSTRATION OF THE PROBLEM

For a class project, three undergraduate students (Michelle Pirelli, Caro-
lyn Canty, and Jennifer Buchholz) collected pile sort data on the domain of
“things that people are afraid of” from male and female undergraduates. The
question they posed was simple: Do the sampled men and women perceive
the domain differently?

One way to answer this question is qualitative: Generate aggregate prox-
imity matrices from each set of pile sorts, use a multidimensional scaling
(MDS) program to represent each proximity matrix in Euclidean space, and
compare those representations visually. In addition, to enhance their compa-
rability, we might rotate one picture relative to the other, stretching and con-
tracting axes as needed. Figure 1 gives the results of this approach. Figure 1a
gives the women’s map, and Figure 1b gives the men’s map, rotated and
stretched to maximally resemble the women’s.1 Yet another variation would
be to stack the two proximity matrices on top of each other and run correspon-
dence analysis, plotting just the row scores. This effectively plots both prox-
imity matrices in the same space, albeit using a slightly different model than
ordinary MDS. Figure 2 gives the results of this approach.

Visual inspection of Figures 1 and 2 suggests broad agreement between
the men and women, with just a few items in different locations. Whereas the
men place “rape” very close to “sickness” and “disease” and toward “death,”
“growing old,” and “losing a loved one” (a cluster we might gloss as serious
mishaps that just happen), the women place “rape” a little closer to “guns,”
“dentists,” and “doctors” (perhaps glossed as human or human-directed
dangers). Similarly, whereas men place “tests” and “public speaking” with
“failure,” “financial trouble,” “commitment,” and “being alone”
(sociopsychological things), women move them closer to phobias (“the
dark,” “flying,” “public spaces,” and “heights”) and natural and supernatural
disasters (“lightning,” “fire,” “thunder,” and “ghosts”).

While the qualitative approach can yield important insights into the ways
that groups differ in their perceptions, we are typically also interested in mea-
suring the extent and significance of similarity or difference. The standard
method for assessing the extent of similarity or difference between two prox-
imity matrices is QAP (Hubert and Schultz 1976). The method involves cor-
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relating the two matrices and then using a permutation test to evaluate the
likelihood of obtaining the resulting correlation by chance alone.

A QAP analysis of the men’s and women’s aggregate proximity matrices
gives a correlation of 0.823, which is significant at p < .001 for ten thousand
permutations. Thus, we conclude that despite one or two differences in detail,
men and women largely see the domain quite similarly (as indicated by the
correlation), and the likelihood that these matrices are independent is quite
low (as indicated by the significance level).

Here is another illustration. Karen Anderson, a student of John
Gatewood’s at Lehigh University, collected pile sort data from fifty under-
graduates on the domain of animals. In addition, based on two biological
classification systems, Gatewood generated two pile sorts representing the
biological classification schemes. Once again, the question was simple: Do
the pile sorts generated by the undergraduates resemble the scientific pile
sorts?

Figures 3 and 4 give the MDS and correspondence analysis maps. This
time, the differences between the two groups are a little more pronounced.
For example, undergraduates group animals primarily by where the animals
are found: land, water, and sky. Consequently, starfish and whales are placed
near each and not far from frogs and salamanders. The scientific classifica-
tions, in contrast, place whales with other mammals, and put starfish far from
everything else.

A QAP analysis of the two aggregate proximity matrices gives a correla-
tion of 0.553 (p < .001 for ten thousand permutations). Thus, despite our
qualitative impression that the pile sorts showed important differences, the
QAP analysis indicates that overall the proximity matrices are quite similar
(as indicated by the correlation) and that this is unlikely to have occurred by
chance (as indicated by the p value). We would normally respond to this
result by speculating about the dependence between these groups—diffu-
sion, common perceptual processes, and so forth.

These results are not unusual: In my experience, virtually every pair of
aggregate proximity matrices derived by splitting a sample of pile sorts
according to some attribute of the informants is significantly correlated based
on the QAP procedure. For example, Boster and Johnson (1989) computed
forty-five separate QAP correlations among aggregate proximity matrices.
All but one was significant. Johnson, Mervis, and Boster (1992) used QAP to
correlate two aggregate proximity matrices and found them significantly
similar. Weller (1984) correlated two aggregate proximity matrices and
found them significantly related. Boster (1987) computed thirty different
QAP correlations among aggregate proximity matrices and found every sin-
gle one of them significant. An interesting case was provided by Garro
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(1986). She compared two similarity matrices, one constructed from the ten
informants who had the highest agreement with the sample as a whole (called
the most reliable) and one constructed from the ten informants who had the
lowest agreement with the sample as a whole (called the least reliable). Garro
wrote:

In the multidimensional scaling plot, the most reliable are those closest to the
center, and the least reliable ones are scattered around the edges. . . . However if
two new data matrices are created, one for the reliable group and one for the
less reliable group . . . and the quadratic assignment program [QAP] is run
again, the resulting z-score of 10.45 (p < 0.01) indicates that the pattern of
responses is highly similar for the two groups. . . . Thus, the less reliable and the
more reliable subgroups are at once both different and the same. (P. 364)

Garro seemed to be wrestling with a situation where the matrices should
have been dissimilar—in fact, were dissimilar—yet QAP said they were
more similar than we would expect by chance.
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If representative, this body of experience raises questions about the valid-
ity or applicability of QAP methodology for the special purpose of compar-
ing aggregate proximity matrices. The possibility that QAP may not be
appropriate for this special case should not alarm QAP enthusiasts: All meth-
ods have their boundaries, and various limitations of QAP have been dis-
cussed before (Faust and Romney 1985; Krackhardt 1986). In the next sec-
tion, I explore the assumptions of QAP in relation to comparing aggregate
proximity matrices and then suggest an alternative methodology that I
believe is more appropriate for this task.

QAP METHODOLOGY

QAP is a special case of randomization tests, a powerful class of statistical
tests going back to Fisher (1934) that have enjoyed a sharp increase in popu-
larity since the spread of very fast computing (Noreen 1989). The generic
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model of randomization tests is simple. Suppose we want to compare two
means, as in comparing test results for boys and girls. We start by computing
the mean for each group and then subtract one from the other. This difference
in means is our test statistic, and we refer to the actual difference between
means among boys and girls as the observed value of the test statistic.

Now we generate a distribution of differences in means that would be
obtained if test scores were wholly independent of gender. That is, we deter-
mine what kinds of results we could obtain (and with what probability) if test
scores were assigned without regard to gender. To generate this distribution,
we randomly reassign the scores to individuals, without regard to gender (or,
to keep it simple, to any other characteristic). We then recompute the differ-
ence in means between the genders and store this difference away. This ran-
dom reassignment and recomputation of differences is repeated tens of thou-
sands of times,2 generating a distribution of differences in means. We then
count the proportion of these differences that are as large as the observed
value of the test statistic.

This proportion or p value is literally the significance of the test and indi-
cates the probability of obtaining a difference as large as actually observed,
given that gender and test ability are actually independent. By convention, if
the probability is less than .05, we regard the result as significant and con-
clude that gender may in fact be a cause of test performance (or, at least, we
cannot rule it out).

In comparing two proximity matrices, the usual test statistic is the Pearson
correlation between corresponding cells of the two matrices. The distribution
of the test statistic under the null hypothesis of independence is obtained by
randomly permuting the rows (and corresponding columns) of one matrix,
then recomputing the correlation, and repeating this process thousands of
times (or, for small problems, all possible permutations). The result is that the
QAP test compares the observed correlation with the distribution of correla-
tions of random matrices that contain the same collection of values that char-
acterize the observed proximity matrices.

Furthermore, by permuting rows and columns rather than individual cells
in the matrices, QAP preserves any hidden dependencies among the cells of
the matrices. For example, the observed proximity matrices may be subject to
transitivities such that if items a and b are very similar, and b and c are very
similar, then a and cmust be fairly similar as well. That is, if s(a, b) > k and
s(b, c) > k, then s(a, c) >m, wherem is not much less than k. If both proximity
matrices were generated by processes that imposed such transitivity, it would
inflate the correlation between them. Thus, comparing that correlation with
the correlations of random matrices without such transitivities would always
result in p values that were, in a certain sense, too low. QAP avoids this prob-
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lem by taking permutations of the rows and columns rather than individual
cells, which preserves all such transitivities. So, QAP would seem rather
appropriate for comparing aggregate proximity matrices.

Yet, experience suggests that virtually every QAP correlation between
two aggregate proximity matrices (such as men’s and women’s) is signifi-
cant. At first glance, this may seem an odd thing to be concerned about. First,
if the correlation is high, then it is high. That is all there is to it. The correla-
tion measures the extent of similarity. Second, if it is a high correlation, why
should we be surprised if it is also significant? Large correlations don’t occur
by chance! This would seem obvious, but, in fact, there is a problem here that
has to do with both the fact that we are dealing with aggregations and with the
implicit null hypothesis.

Consider the case of perceived similarities of items in a well-established
cultural domain such as animals. For the sake of argument, let us grant that all
members of a given culture will categorize animals in grossly similar ways.
In fact, for any given pair of animals, such as worm and elephant, we might
find that no respondent places them in the same pile (similarity score of zero
for each individual). Hence, the aggregate proximity matrix contains a zero
for that pair of animals. In the QAP procedure, many (probably most) permu-
tations will place nonzero similarity scores in that cell, effectively construct-
ing a matrix that simply does not occur empirically. This means that the dis-
tribution of correlations for the null hypothesis includes correlations with
matrices that are unlike anything in the observed data. Consequently, actual
correlations among proximity matrices aggregated from human perceptions
are nearly always higher than these unnatural matrices, and this tends to pro-
duce statistically significant results. Ideally, we would want some way of
generating the null distribution from the kinds of matrices that we actually
observe empirically.

Let me approach this same idea from another direction. Suppose we con-
struct separate proximity matrices for boys and girls and observe some socio-
logically meaningful differences. The correlation is very modest, but the
QAP significance test shows that the boys’ and girls’ matrices are signifi-
cantly similar because it is comparing their similarity against the similarity of
random matrices. The test does not take into account that, given the overall
similarity of all the individual matrices, the correlation between the average
boy’s matrix and the average girl’s matrix may actually be surprisingly
small. That is, when we divide the respondents into two groups according to
other criteria, such as hair color, height, religion, or simply randomly, the
similarity between the resulting aggregate matrices tends to be just as high as
when we do it by gender. So gender is not special: The speciously high corre-
lation we observe would have been obtained by virtually any division into
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groups, and for the purpose of understanding the relation to gender, we would
like this correlation not to be significant.

In other words, QAP tests a different hypothesis than the one we are actu-
ally interested in when comparing aggregate matrices—that is, it compares
the observed correlation against barely constrained random matrices, and
this is the wrong baseline distribution for our purposes. This is not a problem
with QAP itself but with our use of it. That QAP should find that two aggrega-
tions of a given data set are significantly correlated is to be expected, as these
are clearly not independent. For instance, if we consider the cognitive
domain of animals, it would not surprise us that human beings the world over
see the domain very similarly (Boster 1987). Humans, if not primates in gen-
eral, share essentially the same perceptual and cognitive apparatuses. Their
observations are not really independent. Hence, QAP correctly returns a
result of nonindependence. It is simply the wrong technique for the research
question.

However, before moving to another approach, we should address a possi-
ble confusion. When we compare boys’ and girls’ aggregate matrices, it is
ordinarily because we think gender might make a difference in how people
see the world. The null hypothesis is one of sameness between the genders; if
this is rejected, we say that gender makes a difference in how people perceive
the domain in question. But the QAP procedure is normally thought of as a
correlation, with the null hypothesis being a lack of similarity between the
matrices. Is this the root of our problem? No. The QAP procedure is entirely
about significance and is perfectly general with respect to the measure of
association used. We often use correlation today, but QAP was originally for-
mulated using other measures (Mantel 1967; Hubert and Schultz 1976).
Hence, in place of the correlation coefficient, we can just as well use a mea-
sure of dissimilarity, such as one minus the correlation, or Euclidean dis-
tance. Doing this does not change any of the results under discussion here.
For example, when applied to the animal data, a one-tailed QAP test (as they
always are) of the null hypothesis of no difference (by a variety of standard
dissimilarity measures) between matrices produced by students and biolo-
gists yields a p value of approximately 1.000. (If we like, we can think of it as
a significant p value for a test of the alternative hypothesis.) In other words,
just as before, QAP rejects the hypothesis of difference.

A NEW APPROACH

The approach I propose is simple. To compare the boys’ aggregate prox-
imity matrix with the girls’ aggregate matrix, we begin by correlating the two
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matrices (or computing a dissimilarity measure). This is our observed test
statistic. Then we go back to the individual-level data and divide the respon-
dents into two groups at random. We then aggregate the matrices separately
for each group, obtaining an aggregate proximity matrix for each group.
Next, we correlate these matrices (or compute dissimilarity measure) and
store the result. This process is repeated thousands of times to generate a dis-
tribution of (dis)similarities under the null hypothesis of independence (i.e.,
judged proximities are independent of gender). We then count the proportion
of correlations (or dissimilarity measures) that are as small (or as large) as the
observed measure. The question is whether any random division into two
groups would show as much difference as did our boys and girls. The propor-
tion of correlations as small as the observed (or, equally, the proportion of
dissimilarity coefficients as large as the observed) gives the p value: the like-
lihood that the difference we see could be obtained by chance, that is to say,
without regard for gender.

A key difference between the new method and the QAP technique is that
the new method utilizes the individual-level data matrices along with a vector
indicating to which group each individual belongs. In contrast, QAP is
applied to the two aggregate proximity matrices and does not require (and has
no way to take account of) individual-level data.

A more important difference lies in the nature of the null hypothesis being
tested—that is, the reference distribution that the observed similarity mea-
sure is being compared to. The QAP procedure asks whether the two aggre-
gate matrices are independent of each other. It compares the observed corre-
lation to correlations among nearly all matrices that have the same collection
of values and intercell dependencies. Where a set of homogeneous (e.g., all
human) respondents is asked to respond to the same stimuli, the results are a
foregone conclusion: There is a basic commonality—a lack of independ-
ence—among all of the matrices due to the shared perceptual apparatuses,
not to mention culture. And aggregating subsets of respondent matrices
before correlating can sharply accentuate that similarity.

In contrast, the method presented here tests a different hypothesis. This
method asks whether the (dis)similarity between two aggregate matrices is
independent of a respondent attribute. The observed correlation is compared
to a reference distribution of correlations among a set of aggregate matrices
that are created using the same process as the original matrices, automatically
excluding impossible matrices. The reference distribution here is a condi-
tional one: We compare the observed aggregate matrices with the set of all
aggregate matrices that can be constructed from the collected set of individ-
ual matrices. Thus, we take as given the basic similarity among all the indi-
vidual matrices and do not allow that to trigger a significant result.3
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Let us now apply the new method to the Anderson and Gatewood data set.
Let us take no difference between undergrads and biologists as the null
hypothesis and use one minus the correlation coefficient as a measure of dis-
similarity. The observed dissimilarity is 0.447. The p value is .034, which is
significant by conventional standards. In other words, randomly splitting the
fifty-two respondents into any two groups of identical size as our treatment
groups (undergrads and biologists) is unlikely to produce a dissimilarity
between the aggregate proximity matrices as high as 0.447. So we conclude,
contrary to the QAP analysis, that occupational status is related to perception
of animals.

Applied to the fears data collected by Pirelli et al., the new method (again
using one minus the correlation coefficient to measure association) yields a p
value of .062—borderline significant by most standards. We interpret the
result as saying that it is somewhat unlikely (6% chance) that you could
obtain such a large difference by chance alone. Had the probability been just
a little lower (5%), we would conventionally feel comfortable rejecting the
null hypothesis of no difference. Given the actual result, we would note that
in this case the results do not clearly contradict the QAP results, which was
unequivocal in accepting the null hypothesis of no difference.

To illustrate the method in another setting, we turn to an example using
social network analysis. Krackhardt (1987) asked all twenty-one managers
of a high-tech firm to indicate who was friends with whom among all
twenty-one. This results in a data set consisting of twenty-one different
21-by-21 matrices. To obtain an aggregate view of the network, one can sim-
ply average the twenty-one matrices. The resulting values could be inter-
preted as a strength of tie: If manager awas a close friend of manager b, many
people would be likely to have noticed and report it, while if a’s and b’s rela-
tionship were not very close, few people would be likely to report a friend-
ship tie between them.

The data set also contains some information about each manager, includ-
ing their age. I divided the respondents into two groups based on age: older
than the mean (39.7 years) and younger than the mean. Then I created sepa-
rate aggregate matrices for each group and correlated them via QAP. The cor-
relation was 0.704, significant at the p< .0001 level with ten thousand permu-
tations. The Euclidean distance was significant at the p� 1.00 level, which is
to say significant in the other direction, the direction of no difference. Obvi-
ously, these results indicate very high agreement, and the significance level
all but rules out the possibility of independence.

But why should we expect independence? The managers and the employ-
ees work together, interacting on a daily basis. Every pair of matrices is
bound to be similar, and comparing their correlation to correlations among
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matrices that could not be obtained by any aggregation scheme doesn’t seem
very useful. The more appropriate test is the one presented in this article. The
results are in marked contrast to the QAP test. Using one minus the correla-
tion as the measure of dissimilarity, the dissimilarity between aggregate
matrices was significant at the 0.036 level. This indicates that aggregating by
age class yields matrices that are much less similar than we expect by chance,
given the overall pattern of similarity. Again, I stress that the results contrast
with QAP not because there is something wrong with QAP, but because QAP
is not trying to answer the same question we are asking—it is a mistake to use
QAP to compare aggregate matrices.

BEYOND PROXIMITIES

Although my motivation for writing this article was the comparison of
aggregate proximity matrices, there is nothing in the method that limits its
application to proximities. Whereas QAP is limited to comparing whole
matrices, in the method presented here the data could just as well consist of a
vector of values, such as the responses of two groups of respondents to any
set of survey questions.

A particularly interesting application is the comparison of word frequen-
cies in texts. For example, Jang and Barnett (1994) obtained a matched sam-
ple of annual reports from Japanese and American companies and looked at
word counts in the letter from the CEO. A basic question they asked was
whether Japanese and American companies used different words in their
reports. Jang and Barnett used correspondence analysis to see patterns in the
data and also used discriminant analysis to identify a set of words whose fre-
quency helped predict whether the text in which they were found was associ-
ated with an American or Japanese company. The method presented here
gives us a statistical test to determine whether the differences in frequencies
of words could have (with reasonably probability) arisen by chance alone.

Table 1 shows the relative frequencies of the fifty-eight most frequently
used words (not including articles such as the and connectors such as and) by
national origin. The correlation between the U.S. and Japanese columns is
0.319, and the Euclidean distance is 1.949. The correlation may seem high
(and the Euclidean distance low), but it turns out that the probabilities of
obtaining such a low correlation and such a high Euclidean distance are both
smaller than 1/10,000. In other words, given the high level of similarity
between all the texts, it is (statistically) surprising how different the Japanese
and American texts are. That is, there is a cultural effect.
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TABLE 1
Relative Frequencies of Words in Annual Reports, by Nation

Word Overall United States Japan

Business 94 100 88
Products 94 94 94
New 91 94 88
Growth 86 83 88
President 83 67 100
Sales 83 72 94
These 83 72 94
Product 83 83 82
Global 80 78 82
Which 80 78 82
Continue 80 89 71
During 77 72 82
States 77 78 76
Market 77 72 82
United 77 78 76
Net 77 67 88
Company 77 83 71
Results 74 72 76
Continued 74 67 82
World 74 72 76
Chairman 74 94 53
Billion 74 83 65
Economic 71 67 76
Their 71 83 59
Operating 71 78 65
Well 71 94 47
Performance 71 83 59
Years 71 83 59
Time 71 83 59
All 71 78 65
Markets 71 67 76
Financial 71 83 59
Support 69 61 76
Strong 69 83 53
Corporate 69 61 76
Share 69 78 59
Customers 69 78 59
U.S.A. 69 83 53
Operations 69 56 82
Management 66 78 53
Environment 66 44 88
Businesses 66 89 41
One 66 83 47



A similar application of the method is to the comparison of free-list data.
By free-list data, I mean responses to questions of the type “Tell me all the
kinds of ____ you can think of,” where “____” is a cognitive domain such as
animals, illnesses, or occupations. For example, I asked approximately one
hundred undergraduate students to list all the “vacation destinations” they
could think of. A total of 352 locations were given. Table 2 gives the relative
frequencies of destinations named by 10% or more of the sample.

The Pearson correlation between the frequencies of the males and those of
the females is 0.846. The probability of obtaining a correlation as low as that
(given that gender is independent of word recall) is approximately 0.49.
Thus, the hypothesis of gender difference in free listing of vacation destina-
tions is not supported: The frequencies of one gender cannot be statistically
distinguished from the other. It is important to realize that this indistin-
guishability cannot be deduced from the high correlation alone: In another
domain (that of “bad words”), the correlation between boys’ and girls’ fre-
quencies was 0.882, but the p value was a significant .02, while sample size
and domain size were virtually the same as in the vacation study. The differ-
ence in p values is due to differences in the overall level of agreement among
respondents in each study. The bad words domain is a high concordance
domain in which even fairly small differences in frequency between two
groups are unlikely to occur by chance. In contrast, the vacation destinations
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TABLE 1 Continued

Word Overall United States Japan

Million 66 67 65
Industry 63 72 53
Income 63 39 88
Customer 63 72 53
Term 63 56 71
Major 63 72 53
Development 63 56 71
Japan 63 33 94
High 60 50 71
Economy 60 50 71
Further 60 61 59
Up 60 56 65
Despite 60 56 65
Worldwide 60 72 47
Long 60 61 59

NOTE: Limited to words occurring in at least 60% of texts and not including articles and connec-
tor words.
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TABLE 2
Vacation Destinations

Destination Girls Boys

Hawaii 0.68 0.76
Bahamas 0.45 0.63
Cancun 0.53 0.52
Jamaica 0.42 0.52
California 0.42 0.48
Florida 0.45 0.45
Paris 0.34 0.47
Australia 0.39 0.40
Bermuda 0.37 0.34
London 0.39 0.31
Disney World 0.24 0.29
Puerto Rico 0.16 0.32
Italy 0.13 0.32
France 0.18 0.27
Spain 0.13 0.31
Miami 0.29 0.21
New York 0.26 0.21
Rome 0.18 0.26
San Francisco 0.18 0.23
New York City 0.16 0.23
Los Angeles 0.21 0.19
Mexico 0.21 0.18
Egypt 0.11 0.24
Grand Canyon 0.13 0.23
Las Vegas 0.18 0.18
Canada 0.16 0.18
Caribbean 0.13 0.19
Aruba 0.13 0.19
Colorado 0.18 0.16
Cape Cod 0.16 0.18
New Orleans 0.18 0.15
Virgin Islands 0.21 0.13
Montreal 0.16 0.16
Chicago 0.18 0.13
Ireland 0.21 0.11
Alaska 0.16 0.15
Maine 0.16 0.13
Japan 0.13 0.15
Europe 0.16 0.13
D.C. 0.24 0.08
Amsterdam 0.18 0.10
Boston 0.13 0.13
Orlando 0.13 0.13



domain is a low concordance domain; hence, larger differences between
groups can be obtained by chance alone.

The method can be extended for use with more complicated kinds of
aggregation as well. For example, consider the case of a multiple-choice test
underlying the theory of cultural consensus developed by Romney, Weller,
and Batchelder (1986). In their approach, a multiple-choice test is given in
which the answer key is unknown. They use agreement among respondents
to estimate the amount of knowledge they have, and these estimates are in
turn used to guess the answer key. A simple procedure, among many alterna-
tives, for estimating the answer key is to take the modal response for each
question, where respondents are weighted by their knowledge. Given the
possibility of both individual differences and the existence of subcultures
that may have different culturally correct answer keys for the same set of
questions, we can ask whether a given a priori division of the respondents
into two groups reveals systematic differences between them.

Using the techniques described in this article, it is a simple matter to test
the similarity or difference between the answer keys for each group. Essen-
tially, we calculate the answer key for each group, correlate, then randomly
reassign respondents to groups, reestimate the answer keys, correlate, and
repeat a few thousand times. In other words, as long as we use the same pro-
cedure at all times for constructing an aggregate answer key from a set of
respondents, it doesn’t matter for the purposes of this test how exactly the
aggregation is performed: Any aggregation method can be used.
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TABLE 2 Continued

Destination Girls Boys

China 0.11 0.13
Disneyland 0.13 0.11
Germany 0.11 0.13
San Diego 0.16 0.10
Africa 0.05 0.16
Florence 0.08 0.13
New Zealand 0.16 0.08
England 0.03 0.16
Venice 0.08 0.13
Cayman Islands 0.13 0.10
Vermont 0.05 0.15
Brazil 0.08 0.13
Hong Kong 0.16 0.08
St. Thomas 0.13 0.08

NOTE: Values are sample proportions.



CONCLUSION

The objective of this article has been to propose a new method for statisti-
cally comparing pairs of aggregate data series. The motivating problem was
the comparison of aggregate proximity matrices, such as obtained from pile
sort exercises. This problem is central to cognitive research in which we seek
to compare the perceptual maps of different groups. The standard approach
to this problem uses QAP. However, the null distribution that QAP is based
on is not appropriate for correlating subsamples of a data set. QAP explicitly
compares the correlations between subsamples with correlations among a set
of matrices that include many that are quite different from the observed. Con-
sequently, when applied to subsamples, the QAP approach can achieve a sig-
nificant p value too often. In contrast, the method proposed here compares
the observed correlation with the correlations among matrices that are of the
same kind as the observed.

It should be noted that the method presented here is limited to comparison
between two groups. There are clearly ways to generalize to the case of multi-
ple groups, but I leave that as an avenue for future research.

NOTES

1. A minor variation on this approach would be to run the INDSCAL model (Carroll 1972).
2. In principle, we would like to repeat for all possible reassignments, but this is only feasible

for small numbers of respondents. Instead, we sample randomly from the space of all possible
reassignments.

3. The situation is analogous to that of using a classical significance test on data that are not
drawn from a random sample (or in any other way violate the assumptions of the test). If you
obtain a significant result, there is no way to know whether it is because the variables are not
independent or because the sample is not random. This point is made very clearly by Noreen
(1989).
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