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Abstract

Centrality measures, or at least popular interpretations of these measures, make implicit assumptions
about the manner in which traffic flows through a network. For example, some measures count only
geodesic paths, apparently assuming that whatever flows through the network only moves along the
shortest possible paths. This paper lays out a typology of network flows based on two dimensions
of variation, namely the kinds of trajectories that traffic may follow (geodesics, paths, trails, or
walks) and the method of spread (broadcast, serial replication, or transfer). Measures of centrality
are then matched to the kinds of flows that they are appropriate for. Simulations are used to examine
the relationship between type of flow and the differential importance of nodes with respect to key
measurements such as speed of reception of traffic and frequency of receiving traffic. It is shown
that the off-the-shelf formulas for centrality measures are fully applicable only for the specific flow
processes they are designed for, and that when they are applied to other flow processes they get the
“wrong” answer. It is noted that the most commonly used centrality measures are not appropriate
for most of the flows we are routinely interested in. A key claim made in this paper is that centrality
measures can be regarded as generating expected values for certain kinds of node outcomes (such as
speed and frequency of reception) given implicit models of how traffic flows, and that this provides
a new and useful way of thinking about centrality.
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1. Introduction

Centrality is one of the most studied concepts in social network analysis. Numerous
measures have been developed, including degree centrality, closeness, betweenness, eigen-
vector centrality, information centrality, flow betweenness, the rush index, the influence
measures ofKatz (1953), Hubbell (1965), andHoede (1978), Taylor’s (1969)measure, etc.

What is not often recognized is that the formulas for these different measures make
implicit assumptions about the manner in which things flow in a network.1 For example,
some measures, such as Freeman’s closeness and betweenness (Freeman, 1979), count only
geodesic paths, apparently assuming that whatever flows through the network moves only
along the shortest possible paths. Other measures, such as flow betweenness (Freeman et
al., 1991), do not assume shortest paths, but do assume proper paths in which no node is
visited more than once. Still other measures, such asBonacich’s (1987, 1991)eigenvector
centrality andKatz’s (1953)influence, count walks, which assume that trajectories can not
only be circuitous, but also revisit nodes and lines multiple times along the way. Regardless
of trajectory, some measures (e.g., betweenness) assume that what flows from node to node
is indivisible (like a package) and must take one path or another, whereas other measures
(e.g., eigenvector) assume multiple “paths” simultaneously (like information or infections).

What happens when we apply a measure that assumes a given set of flow characteristics
to a flow with different characteristics? One of two things must happen: either we lose the
ability to fully interpret the measure (as when we compute the mean of a nominal-scaled
variable) or we get poor answers (as when we use linear regression to predict values of a
dependent variable when the relationship is actually non-linear).

Thus, the immediate objectives of this paper are as follows. First, to construct a list of
commonly encountered flow processes and cross-classify them in terms of a few underlying
characteristics relevant to measuring centrality. Second, to match existing centrality mea-
sures to appropriate kinds of flow processes based on the flow characteristics they assume.
Third, to test these ideas by running simulations of flow processes and comparing the re-
sults with selected measures of centrality. Fourth, to discuss the development of appropriate
methods for flows that currently are not supported by any measures. Fifth, and finally, to
discuss how considering flow processes entails a new way to think about centrality that
casts centrality measures as expected values in an implicit model of nodal participation in
network flows.

2. Typology of flow processes

In this section, I consider a number of commonly encountered flow processes. It is not
necessary to enumerate every possible kind of flow, but it is important to generate at least
a handful of different kinds. These can then be compared and contrasted in order to elicit
dimensions along which they differ. Finally, the dimensions are used to categorize these and

1 To be more precise, the canonical interpretations we give to these measures are valid to the extent that things
flow in certain ways.
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other flows. I consider each of the following different kinds of traffic: used goods, money,
gossip, e-mail, attitudes, infection, and packages.

2.1. Used goods

Consider the case of a used paperback novel that passes from person to person, particu-
larly through the mails. The novel is a solid, indivisible object that can only be in one place
at a time. As it goes from person A to person B to person C, etc., it could easily return
to a person earlier in the chain, simply because person G has no idea that person B had
previously received it, and person B then graciously passes it on to someone else. However,
except in special cases (e.g., Alzheimer’s), the book does not pass via the same link more
than once. That is, if B has sent it to C, and later B receives the book again, he or she will
not normally send it to C again.

Hence, the paperback traverses the network using what graph theorist would call a trail—a
sequence of incident links in which no link is repeated. Trails are distinguished from paths
– sequences in which not only links but also nodes cannot be repeated – and walks, which
are unrestricted sequences. All paths are trails and all trails are walks, but not every walk is
a trail and not every trail is a path.

2.2. Money

Consider a specific dollar bill that moves through the economy, changing hands with
each economic transaction. Like the gift, the dollar bill is indivisible and can only be in one
place at a time. However, unlike the gift, the dollar bill is not proscribed from passing over
the same link more than once. In fact, it could easily move from A to B, B back to A, A to
B again, then B to C, and so on. From a graph-theoretic point of view, the bill traverses the
network via walks rather than trails. As a result, the movement of money can be modeled
as a Markov process.

2.3. Gossip

Imagine a juicy, very private, story moving through the informal network of employees
of an organization. The story is confidential, which does not impede its flow, but means it is
typically told behind closed doors to just one person at a time. Unlike gifts and dollar bills,
the story can be in several places at once.2 It spreads by replication rather than transference.
Like gifts but unlike dollar bills, it normally does not pass the same link twice (i.e., I do
not tell the same person the same story), but can pass the same node multiple times. Thus,
it traces trails through the network rather than walks.

2.4. E-mail

A typical example is an e-mail message that warns of an electronic virus. The message
is forwarded from one person to several of his contacts, often by sending one message to all

2 I leave aside the question of whether it is really the “same” object that is in multiple places at once.



58 S.P. Borgatti / Social Networks 27 (2005) 55–71

of them simultaneously (unlike confidential gossip). The message exists in multiple places
at the same time, thanks to diffusion by replication.

2.5. Attitudes

Here, the notion is of an influence process in which, through interaction, individuals effect
changes in each other’s beliefs or attitudes. Thus, attitudes about what fashion items are
“in” versus pasśe are spread from person to person. The attitudes spread through replication
rather than transfer (I do not lose my attitude the moment I infect you with it). A speaker
may persuade many people at the same time, and the trajectories followed by the attitude
can revisit links—I can continue to influence you about the same thing over time.

2.6. Infection

Consider the case of an infection to which the host becomes immune. The infection
spreads from person to person by duplication, like gossip, but does not re-infect anyone
who already has had it because they become immune.

2.7. Packages

A package delivery process has the unique characteristic of having a fixed destination
or target. In addition, a driver delivering a package normally knows and selects the shortest
route possible, so that the package’s trajectory follows geodesic paths through a network of
roads and intersections.

2.8. Classification

Given these thumbnail sketches, it is not difficult to see a small set of attributes or
dimensions along which these different flow processes vary. One attribute has to do with
the mechanics of dyadic diffusion: specifically, whether diffusion occurs via replication
(copy mechanism) or transfer (move mechanism). Another attribute, applicable only to
replication-based flows, is whether the duplication is one at a time (serial), like the passing-
on of a paperback novel, or simultaneous (parallel), like a radio broadcast. A third attribute
concerns whether the traffic flows non-deterministically, meaning that at any particular
juncture, traffic always takes the “best” way (such as taking the shortest possible road to a
pre-determined target), or whether traffic flows in a blind, undirected way. Finally, there is
an attribute that describes whether trajectories follow graph-theoretic paths, trails, or walks.

The first two attributes both relate to the mechanism of node-to-node transmission. In
addition, the second attribute is not independent of the first, since it is only defined for
cases falling into one class of the first attribute. As a result, we can simplify the situation by
combining the two attributes into a single categorical dimension with three classes: parallel
duplication, serial duplication, and transfer.

Similarly, the remaining two attributes are both concerned with the kinds of trajectories
that something flowing through the network can take. For convenience, they too can be



S.P. Borgatti / Social Networks 27 (2005) 55–71 59

Table 1
Typology of flow processes

Parallel duplication Serial duplication Transfer

Geodesics <No process> Mitotic reproduction Package delivery
Paths Internet name-server Viral infection Mooch
Trails E-mail broadcast Gossip Used goods
Walks Attitude influencing Emotional support Money exchange

collapsed into a single categorical dimension that describes the four kinds of trajectories
that are realizable. These are geodesics, paths, trails, and walks.

Taken together, these two dimensions can be used to construct a simple typology, as
shown inTable 1. In the table, the rows correspond to the trajectory dimension, while the
columns correspond to the transmission dimension. The cells of the table correspond to
specific flow processes that have been cross-classified by these two dimensions.

Of course, there are other dimensions we can also differentiate among flow processes.
For example, some processes might always involve a two-way effect in which A influences
B at the same time that B influences A. However, to avoid unnecessary complication, I leave
such attributes for exploration at another time.

3. Relation to centrality measures

The purpose of this section is to review a few well-known measures of centrality in order
to see what kinds of flow assumptions they make. I begin with closeness centrality.

As defined byFreeman (1979), a node’s closeness centrality is the sum of graph-theoretic
distances from all other nodes, where the distance from a node to another is defined as the
length (in links) of the shortest path from one to the other. In a flow context, we ordinarily
interpret closeness as an index of the expected time until arrival of something flowing
through the network (Borgatti, 1995). Nodes with low raw closeness scores have short
distances from others, and so will tend to receive flows sooner, assuming that what flows
originates from all other nodes with equal probability, and also assuming that whatever
is flowing manages to travel along shortest paths. In the case of information flows, we
normally think of nodes with low closeness scores as being well-positioned to obtain novel
information early, when it has the most value. Thus, organizations with low closeness in
an R&D technology-sharing network are able to develop products sooner than others. In
contrast, individuals with low closeness scores in a sexual network are positioned to catch
infections early, possibly before treatments are available in the case of new diseases.

If traffic did not travel along shortest paths, we would not want to interpret closeness as
an index of expected time until arrival. Thus, the canonical interpretation of closeness is
accurate for two kinds of processes: those in which things flow along shortest paths, such as
the package delivery process, and those in which things flow by parallel duplication. In the
latter case, all possible paths are followed simultaneously, including the shortest path, and so
the net effect is the same. It would be inappropriate to see closeness centrality as an index of
reception speed for other flow processes. For example, we might be tempted to use closeness
to indicate who is likely to receive news early in a gossip process. However, since gossip
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does not necessarily follow shortest paths, the rank ordering of who receives information
earliest on average will not correspond to the ordering provided by the closeness centrality
measure, as can easily be confirmed by simulation. (Tests of this kind are presented in the
next section.)

It should also be noted that the shortest path assumption includes a pair of assumptions
about reachability. First, the measure only works on connected graphs, since the distance
between unconnected nodes is undefined or, popularly, infinite. Second, taking shortest
paths implies taking paths that in fact reach a particular destination—what we might call
valid paths. If the requirement of taking shortest paths were removed so that traffic could
follow any legal graph-theoretic path, we would still need to assume selection of valid paths
that actually led from origin to target. The reason for this assumption is that traffic flowing
along graph-theoretic paths can easily get stuck in a cul-de-sac from which it could not
escape (since paths are defined as a sequence of adjacent nodes in which no node is visited
more than once) and never actually reach the target. As a result, in interpreting a closeness
measure in terms of time-until-arrival, we implicitly assume a flow process in which traffic
from any origin “knows” how to reach any target, much like a non-deterministic computer
algorithm.

Another well-known centrality measure is betweenness (Freeman, 1979). Betweenness
centrality is defined as the share of times that a nodei needs a nodek (whose centrality is
being measured) in order to reach a nodej via the shortest path. Specifically, ifgij is the
number of geodesic paths fromi to j, andgikj is the number of these geodesics that pass
through nodek, then the betweenness centrality of nodek is given by

∑

i

∑

j

gikj

gij

, i �= j �= k

Stated in plain language, betweenness basically counts the number of geodesic paths that
pass through a nodek. At least, that is the numerator of the measure. The denominator
exists to handle the case where there are multiple geodesics betweeni andj, and nodek is
only along some of them. Hence, betweenness is essentiallyk’s share of all paths between
pairs that utilize nodek—the exclusivity ofk’s position. The idea, as Freeman describes
it, is that a message traveling from node A to node D inFig. 1, when confronted with the
possibility of taking either route, essentially flips a coin and can be expected to choose the
path through B 50% of the time. Thus, betweenness is conventionally thought to measure
the volume of traffic moving from each node to every other node that would pass through
a given node (Borgatti, 1995). Thus, it measures the amount of network flow that a given
node ‘controls’ in the sense of being able to shut it down if necessary.

Fig. 1. Traffic flowing from A to D is expected to pass through B or C with equal probability.
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What are the assumptions built into this measure? Or, to put it another way, for what
kinds of network flows would this measure make sense for? First, it is clear that the measure
assumes that the traffic is indivisible. When confronted with several equally short paths, it
chooses exactly one at random and proceeds. Thus, the traffic seems to literally move or
transfer from node to node, rather than being copied or broadcast from a node. Second, the
traffic travels only along shortest paths. Rather than diffusing randomly, it has a target and
knows the best way(s) to get there. In fact, by taking all pairs of nodes, the measure system-
atically takes into account traffic moving from all possible origins to all possible targets.

What kind of flow has these properties? Surely not an infection nor information, which
diffuse by copying rather than moving and which do not have targets and do not prefer to
take the shortest paths to any node. Thus, it would seem completely inappropriate to use
Freeman’s centrality measure as an index of the importance of a given node for the spread
of infections or the movement of information. Nor does the spread of gossip seem to have
these properties. Like infections, gossip is copied rather than moved, and does not normally
have a target. Even if it has a target, it is unlikely to reach that target by the shortest possible
path, since that would require each node to know what the best route was. Hence, Freeman’s
centrality measure is probably not ideally suited for measuring a node’s ability to control
flows of gossip.3 Rather, the assumptions built in to this measure match the characteristics
of the package delivery process, which is characterized by indivisible traffic that transfers
from node to node along shortest paths until it reaches a pre-determined target.

Another popular measure of centrality is eigenvector centrality (Bonacich, 1972). Eigen-
vector centrality is defined as the principal eigenvector of the adjacency matrix defining the
network. The defining equation of an eigenvector is

λv = Av

whereA is the adjacency matrix of the graph,λ is a constant (the eigenvalue), andv

is the eigenvector. The equation lends itself to the interpretation that a node that has a
high eigenvector score is one that is adjacent to nodes that are themselves high scorers.
Mathematically, eigenvector centrality is closely related to the measures proposed byKatz
(1953), Hubbell (1965), Taylor (1969), Hoede (1978), Coleman et al. (1966), andFriedkin
(1991), almost all of which are known as influence measures. The idea is that even if a
node influences just one other node, who subsequently influences many other nodes (who
themselves influence still more others), then the first node in that chain is highly influential.
At the same time, we can see eigenvector centrality as providing a model of nodal risk such
that a node’s long-term equilibrium risk of receiving traffic is a function of the risk level of
its contacts. Hence, a person A in a sexual network may have sex with just one person, but
if that person is having sex with many others, the risk to A remains high.

It can be shown (Bonacich, 1987, 1991) that an eigenvector is proportional to the row
sums of a matrixS formed by summing all powers of the adjacency matrix, weighted by
corresponding powers of the reciprocal of the eigenvalue, as shown in the next equation.

S = A + λ−1A2 + λ−2A3 + . . .

3 Except, of course, for nodes that are cut-points, in which case Freeman betweenness provides an exact ac-
counting of node control.
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It is also well known that the cells of the matrix powers give the number of walks of lengthk
from nodei to nodej. Thus, the measure counts the number of walks of all lengths, weighted
inversely by length, which emanate from a node.

As a result, the measure “assumes” that traffic is able to move via unrestricted walks
rather than being constrained by trails, paths, or geodesics. In addition, the measure does
not in any way assume that things flow by transferring or by replicating to one neighbor
at a time. Rather, it is consistent with a mechanism in which each node affects all of its
neighbors simultaneously, as in a parallel duplication process (first column of the typology).
Hence, the eigenvector centrality measure is ideally suited for influence type processes.

Finally, there is degree centrality (Freeman, 1979). Degree centrality can be defined as the
number of ties incident upon a node. That is, it is the sum of each row in the adjacency matrix
representing the network. To put the measure on the same footing as the other centrality
measures discussed here, we can also define degree as the number of paths of length one
that emanate from a node. As a result, one way to interpret the measure would be in terms
of an implicit process that involves no indirect links. Examples of such processes might be
situated knowledge construction in the sense ofLave and Wenger (1991)such that nodesi
andj co-construct something that is unique to them—if they engage in similar activity with
others, the result would be different and unique to that pair. This describes a kind of flow
process that falls outside of the typology presented earlier.

However, another way to interpret the measure is as a measure of immediate effects
only—of what happens at timet+ 1 only. For example, if a certain proportion of the nodes
in the network are infected with something, and having a tie with an infected node implies
getting infected, then the probability of immediate infection is a function of the number
of nodes the node is adjacent to. In this sense, degree centrality is similar to eigenvector
centrality, the difference being that eigenvector centrality measures a long-term direct and
indirect risk while degree centrality measures immediate risk only. By analogy, we can
therefore regard degree centrality as a measure of immediate influence—the ability to infect
others directly or in one time period. Seen in terms of immediate effects, we can regard
degree centrality as appropriate for all parallel duplication flow processes, since in those
cases the probability of receiving – in the next time period – something that is randomly
distributed in the network, will be entirely a function of the number of ties that a give node
has.

Finally, degree models the frequency of visits by something taking an infinitely long
random walk through a network (i.e., a money exchange process). As noted earlier, the
money exchange process can be modeled as a Markov process. A well-known result in
Markov theory is that for a random walk on a graph, the limiting probabilities for the
nodes are proportional to degree.4 Hence, the proportion of times that a node is visited is
a function of its degree. This means that degree is an appropriate measure for walk-based
transfer processes such as the money exchange process.

4 This can be shown as follows. Letdi be the degree of nodei, and letaij = 1 if i is adjacent toj and 0, otherwise.
We define the transition probabilities aspij =aij /di and observed thatdj = ∑

iaij . If the limiting probabilities,π,
are based on degree, thenπi = di/

∑
di. We then need to show thatπP=π. Writing πP as

∑
iπipij , we can then

substitutedi/
∑

di for πi to get
∑

i[dipij ]/
∑

di. Recognizing thatdipij isaij , we get
∑

iaij /
∑

di which isdj /
∑

di

which isπj , the result we were looking for.
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Table 2
Flow processes and major centrality measures

Parallel duplication Serial duplication Transfer

Geodesics Freeman closeness
Freeman closeness Freeman betweenness

Paths Freeman closeness
Freeman degree

Trails Freeman closeness
Freeman degree

Walks Freeman closeness
Freeman degree
Bonacich eigenvector

Table 2locates the four best known measures of centrality and influence in the boxes
of the typology for which they are appropriate. It is striking that most of the sociologically
interesting processes are not covered by the major measures. The situation improves a little
if we consider less well-known and/or forthcoming measures. For example, the influence
and status measures ofKatz (1953), Hubbell (1965), Taylor (1969), andHoede (1978)all
fall in the [walks, parallel] cell of the table, along with the closeness measure ofStephenson
and Zelen (1989). Similarly, Friedkin’s (1991)measures of influence also fall in that cell.
In contrast, the random walk betweenness and closeness measures ofNewman (in press)
andNoh and Rieger (2004), respectively, fall into the Markovian [walks, transfer] cell of
the table. Still, there are no measures appropriate for infection and gossip processes, which
I would regard as extremely important.

4. Simulations

Although not presented formally as a theory, the ideas discussed above do constitute
a theory of the structural importance of nodes as a function of flow characteristics. Fur-
thermore, the theory is testable. For example, if I am correct in my assessment of the flow
assumptions that underlie betweenness centrality, it should be that when we actually ob-
serve traffic moving through a network, the number of times that something passes through
a given node should be approximated by the values calculated by the betweenness centrality
formula, as long as the traffic moves according to the rules outlined for a package delivery
process. For traffic moving in accordance with different rules, such as those of a gossip
process, the number of times that traffic moves through a given node should not be well
approximated by the formula. In effect, we should be able to see how well the formula does
when we apply it to the wrong flow process.

Thus, a critical concept in this section is that of expected versus realized centrality.
Expected centrality is the centrality score calculated by the formula that defines it. Realized
centrality is the observed value for a node in the context of a particular flow process. In
other words, I essentially treat centrality measures as testable models of node importance.
For example, in the case of betweenness, the underlying concept being modeled is the
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Fig. 2. Source/target method of running simulations.

amount of traffic that flows through a node. Hence, expected betweenness is a formula-
based prediction, and realized betweenness is the actual frequency of traffic we observe
flowing through a node across multiple instances. Similarly, the key concept in closeness
centrality is the length of time it takes traffic to reach a node (or traffic from a node to reach
others). Hence, expected closeness is a formula-based estimate based on path-lengths, and
realized closeness is what we obtain when we observe actual flows.

In order to guarantee that the flows strictly follow the rules outlined by the theory, I use
simulation to construct observable instances of flow. In general, the simulations proceed
as follows. At time 0, I select a source node and assign it a string representing the traffic
that will flow, whether by replication or transfer, through the network. At time 1 (and every
subsequent time interval), the string flows from any node that has it to one or more (in the
case of parallel duplication) of the node’s alters, either by copying or moving.

A key question that arises is how to stop the simulation. For the package delivery process
(and any other geodesic-based process), there is always a target node, and so the simula-
tion stops when the target has been reached. Thus, a separate simulation is run for each
possible combination source and target nodes. In other words, the simulation study has the
algorithmic structure as given inFig. 2.

For all other flow processes, it makes sense to let the simulation run until the string stops
moving—i.e., it has reached every node it can reach. This approach would definitely be more
in keeping with the notion of modeling real flows. In addition, it is practical in the sense
that every path or trail-based process will definitely end somewhere. Only for walk-based
measures do we need to create some kind of additional stopping rule (e.g., based on length
of walk, or having reached all nodes at least once, etc.), since walks can be infinite. Thus,
a separate simulation would be run for each possible source node. This yields the structure
as given inFig. 3.

However, for the purpose of maintaining comparability when validating against
Freeman’s (1979)centrality measures, I use the source/target method for all flow pro-
cesses, including ones that do not demand a target. To do otherwise would be to guarantee
a lack of fit between the formula-based expected values and the results of the simulation
experiments, and could be seen as an unfair comparison. However, it should be clear that in

Fig. 3. Source-only method of running simulations.
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order to properly model what happens in most flow processes, a centrality measure should
not assume a target node. This topic is taken up in more detail in Section5.

I do the same with closeness centrality because flow processes without targets are not
guaranteed to reach any particular node before becoming trapped. This then means that
sometimes the time until arrival is infinite and cannot be averaged in with the rest. In effect,
for most real flow processes, the graph traced out by actual flows need not be connected.

Also, it should be noted that in some flow processes, it is not guaranteed that a given
simulation from a particular source will actually reach the target. In those cases, the program
simply tries again until the target is reached.

Padgett and Ansell’s (1993)data on marriages among Renaissance families in Florence
are used to illustrate the simulations. The network is shown inFig. 4. It should be noted
that one family was removed because it was an isolate. For simplicity of exposition, only
two measures of centrality are discussed: betweenness and closeness.

4.1. Betweenness centrality

The first simulation to consider is of apackagedeliveryprocess, whose characteristics are
geodesic trajectories achieved by transferring from node to node—or “geodesic + transfer”
for short. To simulate the package delivery process, I pick a starting node S and a target
node T, and map out all shortest paths from S to T. Then, at time 1, the package moves from
S to an adjacent node, chosen randomly with uniform probability, that is along one of the
shortest paths. If the package passes through any node F before reaching T, an observed
betweenness counter for F is incremented. For each run of the simulation, all combinations

Fig. 4. Padgett’s data on marriage ties among Renaissance Florentine families (isolate removed).
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of F, S, and T are systematically tried. Finally, each run is repeated 1000 times, and the
betweenness tally averaged across runs.

If the theory is correct, then the realized betweenness from the simulation should match
exactly the expected betweenness calculated by Freeman’s formula.Table 3(column, “Pack-
age”) compares the results of 1000 runs of the simulation against the expected value. It is
clear that the formula hits the nail on the head, indicating that the flow characteristics of
the package delivery process are appropriate for the measure. The question then becomes
whether other flow processes are inconsistent with the measure, as predicted above.

The next simulation to consider is themoochprocess (paths + transfer), in which indi-
visible traffic is restricted to traveling along paths but is not required to take shortest paths.
As noted before, in order to maximize comparability with the betweenness measure, we
choose to retain the concept of sources and targets, so that in each run each node serves
once as source and as target for each source. For example, when node 1 is the source and
node 2 is the target, we start the traffic at node 1 and let it flow until it reaches node 2.
During that time, we record a betweenness point for each node passed along the way. If the
flow dead-ends before getting to node 2, we simply clear the books for that flow and restart
at node 1. This is then repeated for all possible pairs, cumulating betweenness points (for
successful chains only) across all pairs. Again, the justification here is that when introducing
new ways of looking at centrality, it is important to begin by matching the new ways as
closely as possible with existing ways.

The results show that realized betweenness in a mooch process is roughly similar to
Freeman’s expected values, but significant differences can be found. For example, the Strozzi
family, which is ranked 7th by Freeman’s measure, is found to receive far more traffic than
expected. Indeed, it is ranked 2nd. The reason is that the Strozzis lie along many paths
between others, even if some are not particularly short.

In theused goodsprocess (trail + transfer), the traffic at any particular node randomly
selects an adjacent neighbor from a list of available neighbors to move to. Neighbors are

Table 3
Freeman betweenness and frequency of arrival scores

Actor Freeman Package Mooch Used Gossip Infect Money

Medici 47.5 47.5 113.7 129.8 334.3 887.03 1155.1
Guadagni 23.2 22.8 74.9 73.8 252.2 513.35 827.9
Albizzi 19.3 19.2 41.5 48.5 185.0 285.37 665.9
Salviati 13.0 13.0 26.0 26.0 168.0 182.00 503.3
Ridolfi 10.3 10.7 61.3 64.2 189.0 227.89 665.4
Bischeri 9.5 9.5 60.9 58.6 189.0 257.23 664.7
Strozzi 9.3 9.7 78.1 84.8 295.6 435.10 827.5
Barbadori 8.5 8.5 45.8 46.5 176.0 107.65 503.5
Tornabuon 8.3 8.2 58.2 59.8 189.0 222.97 666.1
Castellan 5.0 5.0 64.5 64.7 188.7 277.20 665.3
Peruzzi 2.0 2.0 59.1 55.1 189.0 232.30 664.7
Acciaiuol 0.0 0.0 0.0 0.0 0.0 0.00 176.9
Ginori 0.0 0.0 0.0 0.0 0.0 0.00 176.8
Lambertes 0.0 0.0 0.0 0.0 0.0 0.00 176.6
Pazzi 0.0 0.0 0.0 0.0 0.0 0.00 177.2
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available if the undirected edge linking them to the current node has not been used before.
The results closely match those of the mooch process. Interestingly, the numbers for Salviati
are identical across all processes considered so far. As it happens, Salviati is located on
a tendril within which the sets of geodesic paths, paths, and trails are identical, so we
expect all transfer processes other than walk-based ones to have identical values for those
nodes.

It is interesting to note that the relative importance of the Strozzi family is greater than
expected by the Freeman measure in all flow processes other than the one Freeman’s measure
is designed for. In particular, Strozzi importance is particularly high in all of the trail-based
flows (gift and gossip). The basic pattern seems to be that the more allowable trajectories
there are, the greater the share of traffic passing through the Strozzi family. It is only when
we restrict flows to traveling along shortest paths that Strozzi drops in importance.

While we do not normally interpret the absolute magnitude of centrality values, we
can do it here because all of the measures measure the same thing on the same network.
Thus, it is meaningful that the two serial replication processes, gossip and infection, have
larger numbers inTable 3than the transfer processes (package, mooch, and gift). This is
because serial replication leads to considerably more traffic flowing through the network,
since multiple copies of the same thing exist simultaneously.

4.2. Closeness centrality

A simulation of thepackage deliveryprocess for closeness centrality is of little interest
except to check the software implementation. By design, the traffic moves only along
shortest paths, and therefore arrives in time proportion to the geodesic distance without
variation. However, for completeness, the simulation was run and the result posted inTable 4.
Since traversing one link takes one unit of time in the simulation space, the numbers in the
table are identical to the Freeman closeness scores.

Table 4
Freeman closeness and first arrival times

Actor Freeman Package Mooch Used Gossip Infect Money

Medici 25 25.0 46.7 50.1 78.9 63.7 575.2
Ridolfi 28 28.0 57.5 60.6 95.7 70.8 587.7
Albizzi 29 29.0 55.7 53.3 100.7 68.6 562.3
Tornabuon 29 29.0 56.4 58.1 98.2 70.0 584.8
Guadagni 30 30.0 53.7 54.8 109.3 68.8 575.3
Barbadori 32 32.0 60.5 55.3 112.3 73.1 584.4
Strozzi 32 32.0 59.9 61.3 104.0 73.3 602.9
Bischeri 35 35.0 61.1 63.9 111.6 74.1 599.0
Castellan 36 36.0 58.3 64.6 125.8 73.3 599.2
Salviati 36 36.0 57.6 59.9 94.3 72.7 533.0
Acciaiuol 38 38.0 59.5 64.3 98.2 69.8 536.3
Peruzzi 38 38.0 61.3 67.9 111.3 75.4 603.7
Ginori 42 42.0 68.9 65.3 124.5 75.9 523.2
Lambertes 43 43.0 66.4 69.8 109.6 76.1 538.2
Pazzi 49 49.0 70.7 72.9 155.9 78.8 497.8
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Themoochsimulation is of greater interest. As shown inTable 4, the average times were
considerably higher for this process than for package delivery. This is because the traffic
is essentially wandering randomly over the graph until it reaches the target. However, the
rank-orders are quite similar.

Thegift processshows very similar results to the mooch process, although there are some
differences in the rank orders. For example, Barbadori is 4th in gift process, compared to
10th in the mooch process. The average times are only slightly higher than for the mooch
process, which is surprising, since trails can be much longer than paths (trails are limited
by the number of edges in a graph whereas paths are limited by the number of nodes).

It should be noted thatTable 4gives times to arrive at the focal node rather than times it
takes to reach other nodes from the focal node. In an undirected graph such as we have here,
we normally expect closeness to be symmetrical, since the distances from a node are the
same as the distances to a node. However, for traffic that does not flow via shortest paths,
distances can be non-symmetric even in undirected graphs. For example, consider a pair of
adjacent nodes, one with degree 10 and one with degree 1 (a pendant). Assume a process
in which at timet, a node selects one alter at random and sends traffic to that node. When
the process begins with the pendant, it unfailingly arrives at the degree 10 node in one unit
of time. However, when the process begins with degree 10 node, it reaches the pendant in
one unit of time only 1 in 10 times—all other times it arrives later. For a transfer process,
on average, it will arrive in five units of time.Table 5gives times from the focal node to all
others.

Comparing withTable 4, one can see that the in and out figures are extremely close for
all nodes except Ginori, which in most processes can reach others more easily than others
can reach it. This is not a statistical fluke. For random walks, the average distance between
two nodes depends on the ordering of opportunities for paths that are encountered. For
example, consider the link between Ginori and Albizzi. In an infection process, an infection
originating with Ginori reaches Albizzi in one unit of time every time. But an infection

Table 5
Freeman closeness and first reach times

Actor Freeman Package Mooch Used Gossip Infect Money

Medici 25 25.0 43.9 42.7 102.4 40.4 172.5
Ridolfi 28 28.0 54.9 54.5 108.8 58.6 287.0
Albizzi 29 29.0 57.3 58.2 107.6 61.8 387.9
Tornabuon 29 29.0 55.0 54.5 107.1 58.7 292.3
Guadagni 30 30.0 54.8 53.5 105.0 52.8 285.0
Barbadori 32 32.0 63.0 60.1 112.6 69.4 446.0
Strozzi 32 32.0 52.0 53.0 108.6 58.8 296.1
Bischeri 35 35.0 57.9 59.0 110.1 62.5 350.6
Castellan 36 36.0 57.3 57.9 110.8 73.4 390.8
Salviati 36 36.0 57.7 67.2 103.7 85.8 777.4
Acciaiuol 38 38.0 59.8 71.4 107.6 90.4 870.0
Peruzzi 38 38.0 59.4 60.2 112.1 74.2 408.5
Ginori 42 42.0 78.1 72.0 114.0 104.0 1084.5
Lambertes 43 43.0 72.0 77.7 110.7 94.3 981.2
Pazzi 49 49.0 70.9 80.1 109.3 99.2 1473.2
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Fig. 5. In the random walk of a mooch process, nodes on the right will reach the nodes on the left more quickly
than the other way around.

originating with Albizzi reaches Ginori on average in two units of time. This is because
Albizzi has three possibilities, so Ginori could either be first, in which case the infection
arrives in one unit of time, or second, in which case it arrives in two units, or third, in which
case it arrives in three units. The average is two.

Similarly, inFig. 5, nodes 1–5 take an average of 5.8 links to reach nodes 8–12. In contrast,
nodes 8–12 take only 5.0 links to reach nodes 1–5. The reason is that when members of
a populous clique begin a random walk, they are very likely to spend quite a bit of time
wandering around their own clique. Few available paths at any juncture actually lead out
of the clique. In contrast, the peripheral members of a star are funneled out of the star and
quickly enter the clique, in which all paths lead to all nodes in relatively short order.

5. Discussion

A common criticism of social network research is that insufficient attention is paid to
network dynamics (e.g.,Watts, 2003). In the case of assessing nodal prominence (i.e.,
centrality), the critics are right. AsFriedkin (1991)has noted, the discussion of centrality
has largely avoided any mention of the dynamic processes that unfold along the links
of a network (not to mention the processes that shape the network structure). Yet, the
importance of a node in a network cannot be determined without reference to how traffic
flows through the network. The simulation studies reported in this paper show that nodes
that are highly central in trail-based processes such as gossip flow need not be highly central
in, say, geodesic-based processes such as package delivery. The characteristics of the flow
process affect which nodes will receive flows (quickly, frequently, and certainly) and which
are in a position to control flows. Just as researchers in experimental exchange theory
have investigated how network position interacts with the rules of the game to generate
opportunities for power use, I have sought to explore how node importance results from an
interaction between position and the characteristics of the flow process. To this end, this
paper offers an analysis of flow processes, noting key dimensions along which they differ
from each other and constructing a simple typology of processes.

In the past, centrality has been considered an abstract property of a node’s position in
a network, measurable without regard for what the nodes and links mean and what pro-
cesses they might support. No doubt many authors of centrality measures did not intend
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their measures to serve as theoretical predictive models. Yet, the measures certainly em-
body theoretical thinking about network phenomena. In this paper, I propose an alternative
conception that views centrality as a node-level outcome of implicit models of flow pro-
cesses. More specifically, I regard the formulas for centrality concepts like betweenness
and closeness as generating the expected values – under specific unstated flow models –
of certain kinds of node participation in network flows. As such, they do not actually mea-
sure node participation at all but rather indicate the expected participation if things flow in
the assumed way. One contribution of this paper is to make explicit what the assumptions
behind each measure are, and then to test this deconstruction via simulation. For example,
when we measure how often a node handles a package in a package delivery process, the
results match to a few decimal places what the Freeman betweenness formula predicts.

Thinking of existing centrality measures as models begs the important question of what
exactly they are models of. To say that centrality measures measure “node importance” or
“node participation” is not specific enough, since there are multiple measures that make
the same flow assumptions (e.g., Freeman’s closeness and betweenness measures). For
closeness and betweenness centrality, there are clear answers. In the context of network flow,
the essence of closeness is time-until-arrival of something flowing through the network. The
Freeman formula provides expected values of arrival times for package deliveries and other
flow processes in traffic moves along shortest paths or take all paths simultaneously. In
contrast, the essence of betweenness is frequency of arrival. The Freeman formula provides
expected values for how often packages pass a station in a package delivery system.5 Thus,
an objective of this paper has been to put forth the notion that the essence of measures like
closeness and betweenness can be separated from the particulars of their formulas which
embody the characteristics of the flow processes for which they were designed. A complete
typology of centrality measures would therefore include not only the dimensions pertaining
to flow characteristics, as inTable 2, but also to the aspect of node participation captured
(such as first arrival time and arrival frequency).

As noted earlier, a striking thing about the set of centrality measures currently in existence
is the absence of measures designed for the flow processes of greatest interest. The Freeman
measures which dominate empirical network analysis are largely misapplied, since the
processes of interest are typically not based on geodesic paths. Thus, there is a real need
for new measures that apply to more realistic flow processes. Of course, as this paper has
shown, we can use simulation to obtain estimates of the expected values for any flow process.
However, simulations are relatively costly and are not suitable for large graphs. Therefore, a
crucial next step is the development of analytical solutions – i.e., formulas – for the expected
values for arrival times and frequencies for a variety of different flow models, a task that
Friedkin (1991)andNewman (in press)have already begun.

Finally, it should be noted as a limitation of this study that I have only considered the case
of flows that have a source and a target. This was done in order to ensure the comparability of
existing centrality formulas with the results generated from flow simulations and establish
the validity of my approach. However, the underlying logic of some of these flows (which are
essentially random traversals of a network) suggests that we should also examine the case

5 It is worth noting in passing that time until first arrival and frequency of arrival are concepts that are well
studied in the context of Markov processes and provide a bridge to that literature.
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where flows originate at each node systematically, but have no particular target. This will
pose some challenges for walk-based processes but is an important line of future research.
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