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Abstract7

The concept of centrality is often invoked in social network analysis, and diverse indices have been8

proposed to measure it. This paper develops a unified framework for the measurement of centrality. All9

measures of centrality assess a node’s involvement in the walk structure of a network. Measures vary along10

four key dimensions: type of nodal involvement assessed, type of walk considered, property of walk assessed,11

and choice of summary measure. If we cross-classify measures by type of nodal involvement (radial versus12

medial) and property of walk assessed (volume versus length), we obtain a four-fold polychotomization13

with one cell empty which mirrors Freeman’s 1979 categorization. At a more substantive level, measures14

of centrality summarize a node’s involvement in or contribution to the cohesiveness of the network. Radial15

measures in particular are reductions of pair-wise proximities/cohesion to attributes of nodes or actors.16

The usefulness and interpretability of radial measures depend on the fit of the cohesion matrix to the one-17

dimensional model. In network terms, a network that is fit by a one-dimensional model has a core-periphery18

structure in which all nodes revolve more or less closely around a single core. This in turn implies that the19

network does not contain distinct cohesive subgroups. Thus, centrality is shown to be intimately connected20

with the cohesive subgroup structure of a network.21

© 2005 Published by Elsevier B.V.22

23

1. Introduction24

Centrality is a fundamental concept in network analysis.Bavelas (1948, 1950)andLeavitt25

(1951)used centrality to explain differential performance of communication networks and net-26

work members on a host of variables including time to problem solution, number of errors,27

perception of leadership, efficiency, and job satisfaction. Their work led to a great deal of28
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experimental, empirical, and theoretical research on the implications of network structure for29

substantive outcomes, particularly in the context of organizations. Centrality has been used to30

investigate influence in interorganizational networks (Laumann and Pappi, 1973; Marsden and31

Laumann, 1977; Galaskiewicz, 1979), power (Burt, 1982; Knoke and Burt, 1983), advantage in32

exchange networks (Cook et al., 1983; Marsden, 1982), competence in formal organizations (Blau,33

1963), employment opportunities (Granovetter, 1974), adoption of innovation (Coleman et al.,34

1966), corporate interlocks (Mariolis, 1975; Mintz and Schwartz, 1985; Mizruchi, 1982), status in35

monkey grooming networks (Sade, 1972, 1989), power in organizations (Brass, 1984and differ-36

ential growth rates among medieval cities (Pitts, 1979). In addition, many other studies use well-37

known measures of centrality but do not identify them as such. For example, researchers working38

with ego-networks use the term “network size” (Campbell et al., 1986; Deng and Bonacich, 1991)39

to refer to a variable that in another context we would recognize as degree centrality.40

While many measures of centrality have been proposed, the category itself is not well defined41

beyond general descriptors such as node prominence or structural importance. In addition, people42

propose all kinds of interpretations of centrality measures, such as (potential for) autonomy,43

control, risk, exposure, influence, belongingness, brokerage, independence, power and so on. The44

one thing that all agree on is that centrality is a node-level construct. But what specifically defines45

the category? What do all centrality measures have in common? Are there any structural properties46

of nodes that are not measures of centrality?47

Sabidussi (1966)tried to provide a mathematical answer to these questions. He suggested a set48

of criteria that measures must meet in order to qualify as centrality measures. For example, he felt49

that adding a tie to a node should always increase the centrality of the node, and that adding a tie50

anywhere in the network should never decrease the centrality of any node. These requirements are51

attractive: it is easy to see the value of separating measures that are “well-behaved” from measures52

that behave less intuitively. However, there are problems with Sabidussi’s approach. For one thing,53

it turns out that his criteria eliminate most known measures of centrality, including betweenness54

centrality. This is clearly unsatisfactory. Furthermore, while his criteria provide some desirable,55

prescriptive, characteristics for a centrality measure, they do not actually attempt to explain what56

centrality is.57

Freeman (1979)provided another approach to answering the ‘what is centrality’ question. He58

reviewed a number of published measures and reduced them to three basic concepts for which he59

provided canonical formulations. These were degree, closeness and betweenness. He noted that60

all three attain their maximum values for the center of a star-shaped network, such as shown in61

Fig. 1. It can be argued that this property serves as a defining characteristic of proper centrality62

measures.63

Borgatti (2005)has recently proposed a dynamic model-based view of centrality that focuses64

on the outcomes for nodes in a network where something is flowing from node to node across the65

edges. He argues that the fundamental questions one wants to ask about individual nodes in the66

dynamic flow context are (a) how often does traffic flow through a node and (b) how long do things67

take to get to a node. Once these questions are set, it becomes easier to construct graph-theoretic68

measures based on the structure of the network that predict the answers to these questions. Hence,69

in this approach, measures of centrality are cast as predictive models of specific properties of70

network flows.71

In this paper, we present an alternative perspective that eschews the dynamic element and is72

fundamentally structural in character. It is a graph-theoretic review of centrality measures that73

classifies measures according to the features of their calculation. Whereas the model-based view is74

centered on the outcomes of centrality, the graph-theoretic view is centered on the way centrality75
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measures are calculated. In short, the present perspective is a means-based classification rather76

than the ends-based classification presented byBorgatti (2005).77

2. Terminology78

For simplicity (and in accordance with centrality convention), we will assume that all networks79

on which we might compute centrality measures consist of undirected graphsG(V, E), in which80

V is a set of nodes (also called vertices, points or actors) andE is a set of edges (also called ties or81

lines) that connect them. Many centrality measures can be discussed in terms of directed graphs82

as well, but this topic is not treated here. It will be helpful to represent a graph in terms of its83

adjacency matrixA, in whichaij = 1 if (i, j) is in E.84

Nodes that are not adjacent may nevertheless be reachable from one to the other. A walk from85

nodeu to nodev is a sequence of adjacent nodes that begins withu and ends withv. A trail is a86

walk in which no edge (i.e., pair of adjacent nodes) is repeated. A path is a trail in which no node87

is visited more than once.88

The length of a walk is defined as the number of edges it contains, and the shortest path between89

two nodes is a known as a geodesic. The length of a geodesic path between two nodes is known90

as the geodesic or graph-theoretic distance between them. We can represent the graph theoretic91

distances between all pairs of nodes as a matrixD in which dij gives the length of the shortest92

path from nodei to nodej.93

3. Comparison of methods94

To explain the graph-theoretic perspective, we begin by considering a sample of centrality95

measures and examining how they are computed. In a process similar to the anthropological96

technique of componential analysis, we extract dimensions along which measures vary. These are97

then used to develop a three-way typology of measures. We organize the discussion around the98

three best-known measures of centrality: degree, closeness and betweenness (Freeman, 1979).99

3.1. Degree-like measures100

We begin by considering the simplest and best-known measures of centrality: degree centrality.101

As defined byFreeman (1979), degree centrality is a count of the number of edges incident upon102

a given node. As shown in Eq.(1), it can be computed as the marginals of the adjacency matrix103

A:104

cDEG
i =

∑
j

aij (1)105

We can express this in matrix notation asCDEG = A1, where1 is a column vector of ones.106

It is useful to recognize that every edge is a walk of length 1. Consequently, we can think107

of degree centrality as counting the number of paths of length 1 that emanate from a node.2
108

Degree centrality is therefore a special case of the measure proposed bySade (1989)calledk-109

2 As noted earlier, we assume an undirected graph. Hence, we can equally well describe degree in terms of the number
of paths of length 1 that terminate at a node.
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path centrality3 which counts all paths of lengthk or less that emanate from a node. Whenk = 1110

(its minimum value), the measure is identical to degree centrality. Whenk = n − 1 (its maximum111

value), the measure counts the total number of paths of any length that originate at a given112

node.113

In order to establish the commonality of structure across measures of centrality, it is useful to114

note thatk-path centrality may be computed as the marginals of a matrixW in which wij is the115

number of paths of lengthk or less from nodei to nodej. That is,CK − path= W1.116

Other variations on this theme may be obtained by choosing different restrictions on the kinds117

of paths counted. For example, if we are only interested in shortest paths, we can definegeodesic118

k-path centrality as the number ofgeodesic paths up to lengthk emanating from a given node. We119

can think of this as measuring the amount of direct involvement that a node has in the geodesic120

structure of the network.121

Another variation is to count only edge-disjoint paths. Edge-disjoint paths are paths, which122

share no edges. Counting the number of edge-disjoint paths up to lengthk that originate or123

terminate at a given node yields a centrality measure we shall calledge-disjoint k-path centrality.124

Disjoint k-path centrality measures can be thought of as inverse measures of vulnerability. This125

interpretation is based on a theorem byFord and Fulkerson (1956)which states that the number126

of edge-disjoint paths linking two nodes is equal to the minimum number of edges that must be127

deleted in order to disconnect the two nodes.4 In a network in which ties are subject to destruction128

(as in roads in a war zone), a disjointk-path centrality measure assesses how difficult it would be129

to isolate a given node.130

A variant of disjointk-path centrality counts the number of vertex-disjoint paths up to length131

k rather than edge-disjoint paths. Vertex-disjoint paths are those which share no vertices (except132

the two end nodes). The set of such paths in a graph is a subset of the set of edge-disjoint paths.133

Menger (1927)showed that the number of vertex-disjoint paths linking two nodes is equal to the134

number of nodes that must be removed from a graph in order to isolate the two nodes from each135

other. The measure of social proximity developed byAlba and Kadushin (1976), and used as a136

basis for detectingsocial circles, is a (normalized) count of all vertex-disjoint paths of length 2137

or less connecting any two nodes. We call a measure counting the number of vertex-independent138

paths that originate or terminate at a given node avertex-disjoint k-path centrality measure. The139

GPI power measure ofMarkovsky et al. (1988)is a vertex-disjointk-path centrality measure,140

which subtracts the number of even-length vertex-disjoint paths emanating from a node from141

the number of odd-length vertex-disjoint paths emanating from the same node. Allreachability142

measures (Higley et al., 1991), which count the number of nodes a given node can reach in a given143

number of links, are vertex-disjointk-path centrality measures.144

Thus far, we have only considered variations of degree centrality, which count true graph-145

theoretic paths. However, a number of measures count all walks, including those that visit the146

same nodes repeatedly.Katz’s (1953) measure of centrality is a weighted count of the number147

of walks originating (or terminating) at a given node. The walks are weighted inversely by their148

length so that long, highly indirect walks count for little while short, direct walks count for a great149

deal. The extent to which the weights attenuate with length is controlled by an arbitrary parameter150

3 Sade actually used the termn-path centrality, but sincen is usually reserved for the number of nodes in a network,
we have usedk instead.

4 The number of edge-disjoint paths between two nodes is also equal to the maximum flow between them (Ford and
Fulkerson, 1962).
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supplied by the researcher. Katz’s measure is defined as follows:151

wij = baij + b2(a2)ij + · · · + bk(ak)ij + · · · =
infinity∑
k=1

bk(ak)ij

ci =
∑

j

wij

(2)152

In matrix notation,CKATZ = W1. Eq. (2) is based on the fact that the number of walks of length153

k between all pairs of nodes is given by thekth power of the adjacency matrix. The series is154

guaranteed to converge only ifb is chosen to be smaller than the reciprocal of the largest eigenvalue155

of A.Hubbell (1965)proposed a measure very similar to Katz’s, but which allows for the possibility156

of taking a weighted row sum ofW. The weights are potentially but not necessarily derived from157

the network itself. If the weighting vectore is chosen to be all ones, Hubbell’s measure equals158

Katz’s minus 1. Ife is chosen to be the degree of each node, asHoede (1978)suggested, the result159

is that Katz’s and Hubbell’s measures are identical.Friedkin (1991)has developed a measure160

calledtotal effects centrality which is equal to Katz’s divided by the constant 1− b.161

Bonacich (1987)writes a variant of Katz’s measure in slightly more general terms as follows:162

wij = δ(aij + b(a2)ij + b2(a3)ij + · · ·) = δ

infinity∑
k=1

bk(ak+1)ij

ci =
∑

j

wij

C = W1

(3)163

Whenb is positive, Bonacich’s and Katz’s measure are perfectly correlated. Whenb is negative,164

the two measures are perfectly negatively correlated. A key contribution of Bonacich’s was to165

realize thatb could be negative and that this would have a substantive interpretation in exchange166

networks (Cook et al., 1983; Markovsky et al., 1988). Indeed, Bonacich’s measure predicts power167

use in experimental exchange networks very nicely. This is interesting because a negative value168

for b means that Eq.(3) effectively subtracts the number of even-length walks from the number169

of odd-length walks. This is exactly the same as the other well-known measure of power that170

emerges from the experimental exchange network literature, the GPI index of Markovsky et al.171

As Markovsky et al., point out, having many alters one link away from a node enhances that172

node’s bargaining power, but having many alters two links away enhances the power of the node’s173

first-order alters, and so on. More generally, a basic principle in exchange networks is that a node174

is powerful to the extent that it is connected to weak alters. In turn, a node is weak if it is connected175

to powerful alters. Interestingly, these descriptions resemble the hub and bridge distinctions of176

Mintz and Schwartz (1981a,b)andMizruchi et al. (1986). The principal difference between GPI177

and the Bonacich power measures is that the former counts only vertex-disjoint paths while the178

latter counts all walks (weighted inversely by length).179

Another way of interpreting the walk-based measures is in terms of an intuitive notion5 that180

a person’s centrality should be a function of the centrality of the people he or she is associated181

with. In other words, rather than measure the extent to which a given actor “knows everybody”,182

5 Probably originating withAlexander (1963), but clearly evident inBonacich (1972)as well.
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we should measure the extent to which the actor “knows everybody who is anybody”. Hubbell’s183

measure can be written as follows:184

cHUB = XcHUB + e (4)185

whereX is a matrix derived fromA, ande is the weighting vector of possibly exogenous con-186

tributions to status. Katz’s and Hoede’s measures are a special case of Hubbell’s in whiche is187

equal to the row sums ofX, andX = bA. Thus, both Katz and Hubbell can be seen as “implicit”188

centrality measures in which the centrality of a node is given by the weighted row sums of an189

adjusted adjacency matrix, where the weights are the centralities of the columns.190

Bonacich (1972)noted the similarity of Eq.(4) to the definition of an eigenvector (Eq.(5)) and191

recommended that the principal eigenvector (associated with the largest eigenvalue) be used as a192

centrality measure. He has shown (Bonacich, 1991) that the eigenvector ofA is the limit of Katz’s193

measure asb approaches 1/λ from below. Thus, the eigenvector can be regarded as an elegant194

summary of Katz, Hoede’s and Hubbell’s measures.195

v = λ−1Av (5)196

Having defined the eigenvector v of adjacency matrixA, we can calculate theW matrix in Eq.(3)197

more simply, as follows:198

wij = aijvj (6)199

Coleman’s (1973) Power and Burt’s (1982) prestige are application of the eigenvector measure200

to specific types of data. In Coleman’s case, the matrixA’ is restricted to the relation “depends201

on”, while in Burt’s caseA’ is a non-symmetric relation such as “likes”.6
202

It is apparent that the variations among the degree-based measures are due entirely to the kinds203

of restrictions placed on the kinds of walks counted. This defines one typological dimension that204

we can use to classify measures. We refer to this dimension asWalk Type.205

3.2. Closeness-like measures206

It is also apparent that all of the measures considered so far count the number or volume of207

walks (of some kind) joining each node to all others. We shall refer to these asvolume measures.208

Another set of centrality measures assesses thelengths of the walks that a node is involved in.209

We call theselength measures. The distinction between volume measures and length measures210

forms another classificatory dimension, which we callWalk Property. It refers to what property211

of paths (their number or their length) is being measured.212

The best known distance measure isFreeman’s (1979)closeness centrality, which is defined213

as the total geodesic distance from a given node to all other nodes. As shown in Eq.(5), it is214

computed as the marginals of a geodesic distance matrixD:215

cCLO
i =

∑
j

dij (7)216

In matrix notationCCLO = D1. This is clearly parallel to the degree-based measures discussed in217

the previous section, withD playing the role ofW. Since the number of nodes is fixed in a network,218

6 The descriptions are written in terms ofA’ instead of A because Coleman and Burt take column sums rather than row
sums as we do here.
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the measure is equivalent to the mean distance of a node to other nodes. Closeness centrality is an219

inverse measure of centrality since larger values indicate less centrality. In this sense, it technically220

measures farness rather than closeness7.221

Direct measures of closeness (rather than farness) can be obtained by transforming the distance222

matrix into a “nearness” matrix prior to computing row marginals. For example,Høivik and223

Gleditsch (1975)recommend a linear transformation, as doValente and Foreman (1998). The224

latter approach is to take either the row sums (which they call radiality) or the column sums225

(integration) of the geodesic distance matrix subtracted from a constant.8 In contrast,Burt (1991)226

recommends9 the following exponential transformation:227

sij = αdij (8)228

Other variants of closeness can be obtained by varying the way the initial distance matrix is229

defined. In Freeman’s measure, closeness is based on geodesic distances. Eachdij entry in the230

geodesic distance matrix can be viewed as the minimum of the vector of lengths of all paths from231

i to j. However, if we do not believe that a given substantive phenomenon, such as diffusion of232

information, always makes use of the shortest paths, it makes sense to take into account all paths233

from i to j, perhaps by taking the median or mean length of all paths. The latter option is in fact234

the approach taken byFriedkin (1991)in developing hisimmediate effects centrality, which is235

defined as the reciprocal of the average distance from a given node to all others, where the distance236

between two nodes is defined (apart from scaling constants) as the average length of all paths237

between them. The problem with this, as we have discussed for other measures, is that many of238

the paths we shall be averaging together will not be totally distinct from each other. The question239

is, should we give full weight to all paths, or should we try to take into account the fact that some240

paths are largely redundant?241

If we think of each path fromi to j as a vector, we can see that what we are looking for is the242

length of a linear combination of the vectors in which some vectors are weighted more heavily243

than others according to their distinctiveness. Thus, we seek a set of weights or coefficients that244

are optimal with respect to some well-specified criterion. The question is, what criterion? In a way,245

the linear combination we want is the opposite of a factor or principal component. AsNunnally246

(1967)observes, the variance of a linear combination is high if the vectors are highly (positively)247

correlated, and low if they are not. Hence, we are looking for a linear combination that has as little248

variance as possible, given some constraint on the weights. If we denote thekth path between249

two nodes aspk, the variance of the linear combinationw1p1 + w2p2 + · · · wkpk = Σkwkpk is250

given by251

Var

(∑
k

wkpk

)
=
∑

k

∑
l

wkwlσkl (9)252

whereσkl refers to the covariance between thekth andlth paths. Thus, we seek a set of weightsw253

that minimize Eq.(9), subject to the constraint thatΣwk = 1. After differentiating and rearranging254

7 A normalized version of closeness, in which the reciprocals ofcCLO are multiplied by the number of nodes minus 1,
solves this terminological problem.

8 It is sometimes claimed that this linear transformation enables us to measure closeness in disconnected graphs (i.e.,
those containing undefined distances) but this is not the case. In fact, if the constant is taken to ben, this approach gets
the same results (linearly rescaled) as simply replacing undefined distances withn, which is clearly unsatisfactory.

9 In somewhat different context.
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terms, we find that the optimal weights are the row marginals of the inverse of the covariance255

matrix, divided by the sum of all entries. Using these weights, we can theoretically construct a256

combined path fromi to j whose length can be used as the distance betweeni andj. Computing257

this distance for all pairs of nodes, a new measure of closeness centrality can be constructed by258

computing the row marginals of the distance matrix, or, as above, from the reciprocals of the259

distance matrix.260

The difficulty in all this, of course, is that we have not said how paths are to be represented as261

vectors. One possibility is a 0/1 indicator matrixX in which paths are columns, rows are edges,262

and valuesxij of the matrix indicate whether or not theith edge occurs in thejth path. Note that263

the length of a path is given by the column sums minus 1. We can then compute covariance in the264

usual way, solve for the optimal weights, and construct a minimum variance linear combination.265

The length of the combined path is then given by the sum of its values.266

A different approach is taken byStephenson and Zelen (1989), who propose that we simply267

declare the covariance of two paths to be the number of edges they have in common10. If we268

pretend that Eq.(8)still holds, we can then solve for the linear combination of paths with minimum269

“variance”. Further, the variance of the best linear combination is then interpreted as its length,270

and therefore gives us the distance betweeni andj. The distances are converted to “nearnesses”271

by taking reciprocals, and a closeness measure is constructed by taking the harmonic mean of272

each row of the nearness matrix. Stephenson and Zelen invoke information theory to interpret the273

nearness matrix as “information”, and so they name their measure “information centrality”.274

A variation on closeness is what we shall callcentroid centrality. The idea is that one first275

identifies one or more nodes as the networkcentroid. Then, to calculate the centrality of any node,276

one measures the distance from that node to the centroid. One obvious choice for the centroid is277

the graph-theoretic center (Harary, 1969), which is the node (or pair of nodes if not unique) that278

has the least eccentricity. A node’s eccentricity is the length of its longest geodesic path to another279

node. We can then measure closeness as a node’s geodesic distance from the center. Of course,280

any criteria could be used to identify the central node(s), including other centrality measures.281

Another approach is to embed the graph into a multidimensional metric space (Freeman, 1983),282

find the location least distant from all nodes, and use the distance from that point to all others283

as centrality. This approach was used byLaumann and Pappi (1973). Here, the term “distance”284

refers to Euclidean distance, or any other distance metric used to define the vector space.285

3.3. Betweenness-like Measures286

All of the measures considered so far—including both the volume and the length measures—287

assess walks that emanate from or terminate with a given node. We shall refer to these asradial288

measures. Another class of centrality measures exists which are based on the number of walks289

10 Interestingly, when all paths are the same length, the covariance between paths (represented by the edge-path incidence
matrix described previously), really is related to the number of edges they have in common. Recall that covariance between
pathsk andl is defined as

1
n

n∑
i

xikxil −
(

1
n

n∑
i

xik

)(
1
n

n∑
i

xil

)

When all paths have the same length, the term to the right of the subtraction becomes a constant, so the covariance is a
linear transformation ofΣixikxil, which is the number of edges shared by pathsk andl.
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that pass through a given node. We call thesemedial measures. The distinction between radial290

and medial measures forms the third classificatory dimension, which we call Walk Position.291

The best known medial measure is Freeman’sbetweenness centrality. Loosely described,292

the betweenness centrality of a node is the number of times that any actor needs a given actor293

to reach any other actor. A more precise definition is as follows: Letgikj denote the number of294

geodesic paths from nodei to nodej, and letgikj denote the number of geodesic paths fromi to295

j that pass through intermediaryk. Then the betweenness centrality is defined as follows:296

CBET
k =

∑
i

∑
j

gikj

gij

(10)297

The measure is, in effect,k’s share of all shortest-path traffic fromi to j, summed across all choices298

of i andj. If there is only one shortest path from any point to any other, the measure is equal to the299

number of geodesic paths that pass through a given nodek. One can easily imagine that when the300

network being studied consists of ties that are very costly to build, betweenness will indeed index301

an ability to extort benefits from flows through the network. For example, if the network represents302

trade routes between medieval cities, the cities with high betweenness centrality have opportunities303

for amassing wealth and exerting control that other cities would not have (Pitts, 1979).304

Several variations on betweenness centrality are possible. First of all, the reliance on geodesic305

paths alone may be undesirable. While inter-city trade might well take only shortest paths (in306

order to minimize costs), information might flow equally well across all possible paths. Hence we307

would modifygikj to record the number of paths of any kind that linki andj via k. Borgatti (2002,308

2005)considers betweenness for all possible paths, as well as all possible trails, as well as walks309

(weighted inversely by length). However, he uses simulation to estimate the betweenness values310

rather than formulas. Newman (2004) provides closed-form equations for the case of random311

traversal via walks.312

Another set of variants is obtained by limiting the length of paths, on the idea that very long313

paths are seldom used and should not contribute to a node’s betweenness. Such measures might314

be calledk-betweenness centrality, wherek gives the maximum length of paths counted.Friedkin315

(1991)proposes a measure that is essentiallyk-betweenness measures withk = 2. Similarly,Gould316

and Fernandez (1989)develop brokerage measures that are specific variants of 2-betweenness317

measures. A sophisticated variant would be a class of betweenness measures that count paths of318

all lengths, but weight them inversely in proportion to their length.319

Of course, if we count all paths or walks we are in danger of double-counting since many320

paths can share the same subset of edges. If this is a concern, we would want to count only edge-321

disjoint paths. This is exactly whatFreeman et al. (1991)have done. Their measure is calledflow322

betweenness 11. It is called flow betweenness because of the well-known relationship between323

the number of edge-independent paths between a pair of nodes, and the amount of material that324

can flow from one node to another via all possible edges (Ford and Fulkerson, 1956). Since flow325

betweenness assesses the proportion of edge-independent paths that involve a given node, it is326

in effect measuring the amount of flow in the network that would not occur if the node were not327

present (or were choosing not to transmit). This is really the essence of any betweenness measure:328

the potential for withholding flow, otherwise known as gatekeeping.329

11 Flow betweenness bears the same relationship to geodesic betweenness that information centrality bears to Freeman’s
closeness measure. Both information centrality and flow between-ness take into account all edge-disjoint paths, whereas
Freeman’s closeness and geodesic between-ness consider only geodesic paths.
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An interesting aspect of flow betweenness is how it is computed. Because the sets of edge-330

independent paths between any two nodes are not unique, flow betweenness cannot be calculated331

directly by counting paths. Instead, programs like UCINET (Borgatti et al., 2002) essentially332

simulate the gatekeeping process by calculating flows between all pairs of nodes in the net-333

work, then removing the node whose centrality is being measured, and then recalculating the334

flows.335

More specifically, let us denote byW the matrix of maximum flows between nodes (i.e., the336

number of edge independent paths between them) and denote bykW the matrix derived fromW by337

deleting row and columnk. In addition, let us denote bykW* the matrix obtained by deleting node338

k from the original network, and recalculating the flow matrix. We can then define flow centrality339

as follows:340

ck =
∑
i,j

kwi,j − kw∗
i,j

kwi,j

(11)341

We can reformulate all betweenness measures in accordance with Eq.(11), simply by changing342

theW matrix. For example, to calculate Freeman’s betweenness, we take W to be the geodesic343

count matrix in whichwij gives the number of geodesic paths fromi to j. Applying Eq.(11)gives344

scores exactly equal to twice Freeman’s values.345

Thus, betweenness-type measures might be thought of as “proportion reduction in cohesion”346

(PRC) measures, analogous to proportion reduction in error (PRE) measures in statistics. Where347

something flows over the links of a network, PRC measures quantify the potential of a node to348

disrupt flows throughout the network by ceasing its own transmissions.349

If we define cohesion in terms of reachability, a PRC measure essentially indexes the network350

fragmentation that results from removing a node. Such a measure, called fragmentation (F),351

was introduced byBorgatti (2003, forthcoming). The F measure is simply the proportion of352

disconnected pairs of nodes that results when a given node is removed from a network. The bigger353

the value, the more important the node in maintaining cohesion. As implemented in UCINET354

(Borgatti et al., 2002), the measure is accompanied by a normalization in which the level of355

fragmentation of the original network is subtracted from the fragmentation after removing a356

given node, divided by the fragmentation of the original network. Large positive values indicate357

nodes that contribute to the cohesion of the network, while large negative values indicate nodes358

that reduce the cohesiveness of the network.359

Defining cohesion in terms of distance yields a different set of measures. As a specific exam-360

ple, let us define a cohesion matrixW as the reciprocals of the geodesic distance between all361

pairs of nodes in a network (with the convention that the reciprocal of an undefined distance362

is 0). Now, we remove a given node (whose centrality we are measuring) from the W matrix,363

yielding kW, and also remove the node from the original network and re-compute the recipro-364

cals of geodesic distances among all pairs of remaining nodes, yieldingkW*. Then we apply Eq.365

(11), subtracting the values ofkW* from the values ofkW and dividing bykW. Summing all of366

these adjusted values, we obtain the relative decrease in cohesion obtained by removing a given367

node.368

A similar measure was proposed byBorgatti (2003, forthcoming). Called “distance-weighted369

fragmentation” (DF), this measure is defined as the average reciprocal distance among nodes after370

removal of a given node. The measure is 1 when all nodes are distance 1 from each other (i.e., a371

complete graph), and 0 when all nodes are isolates. Intermediate values index the extent to which372

the presence of a node tends to reduce distances in the network.373



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

SON 499 1–19

S.P. Borgatti, M.G. Everett / Social Networks xxx (2005) xxx–xxx 11

Table 1
Cross-classification of centrality measures

Radial Medial

Volume Freeman degree, Sade k-path, Bonacich eigenvector, Katz status,
Hubbell status, Hoede status, Doreian iterated Hubbell,
Markovsky et al. GPI, Friedkin TEC, Coleman power,
Bonacich power, Burt prestige

Anthonisse rush Freeman
betweenness, Freeman et al.
flow between, Friedkin MEC,
Newman RWB

Length Freeman closeness, Stephenson-Zelen information Friedkin IEC Borgatti DF

4. A Typology of measures374

It is apparent in this review of measures that all of the measures evaluate a node’s involvement in375

the walk structure of a network. That is, they evaluate the volume or length of walks of some kind376

that originate, terminate, or pass through a node. Furthermore, all are based on the marginals of an377

appropriately constructed node-by-node matrix, although the method of calculating marginals can378

vary from simple sums to averages and weighted averages to harmonic means, and so on. Thus379

four basic dimensions distinguish between centrality measures: the types of walks considered380

(called Walk Type, such as geodesic or edge-disjoint), the properties of walks measured (called381

Walk Property, namely volume or length), the type of nodal involvement (called Walk Position,382

namely radial or medial), and type of summarization (called Summary Type, such as sum or383

average).12
384

The Walk Type dimension concerns the restrictions that some measures impose on the kind of385

walks considered, such only geodesics, only true paths, limited length walks, and so on. The Walk386

Property dimension distinguishes between measures that evaluate the number of walks a node is387

involved in from measures that evaluate the length of those walks. The Walk Position dimension388

distinguishes between measures that evaluate walks emanating from a node from measures that389

evaluate walks passing through a node. The Summary Type dimension distinguishes measures390

using different ways to summarize rows of the walk matrix13. For simplicity,Table 1gives a list391

of centrality measures cross-classified by just two of the dimensions: Walk Property (volume vs.392

length), and Walk Position (radial vs. medial).393

While each centrality measure uses a differentW matrix, in all cases theW matrix is an indicator394

of social proximity/cohesion among nodes.14 Almost all of theW matrices we have seen have395

been identified specifically in the network literature as measures of cohesion. Thei, jth cell of396

12 A fourth attribute, less important, is the choice of summary statistic. All centrality measures can be computed by
summarizing the rows of an actor-by-actor matrixW (or A). Typically, this statistic is a simple sum or average. However,
other summary statistics, such as weighted means, medians, modes, minimums and maximums, are used as well. This
decision point is well known in cluster analysis, where the difference between some clustering methods is whether the
minimum, maximum or median is used to compute the distance from a point to a set of points (Johnson, 1967; D’Andrade,
1978). An important example of a weighted mean is the eigenvector, which is used byBonacich (1972), Burt (1982), and
Doreian (1986).
13 This decision point is well known in cluster analysis, where the difference between some clustering methods is

whether the minimum, maximum or median is used to compute the distance from a point to a set of points (Johnson, 1967;
D’Andrade, 1978). An important example of a weighted mean is the eigenvector, which is used byBonacich (1972), Burt
(1982), andDoreian (1986).
14 We use the terms proximity and cohesion interchangeably to refer to social closeness or strength of connection between

pairs of nodes.
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anyW matrix indicates the “connectedness” or “relatedness” ofi andj, which is often assumed397

to correspond to a potential for transmission of attitudes, diseases, resources, etc. Of course, the398

values ofW can be scaled such that large numbers indicated greater cohesion (as in a matrix of399

valued strengths of ties) or lesser cohesion (as in a geodesic distance matrix).400

If the W matrix reflects dyadic cohesion, it is no surprise that summarizing the values of theW401

matrix gives the well-known measures of network cohesion such as density and characteristic path402

length. Density is simply the average of the adjacency matrix across all cells, while characteristic403

path length is the average (or other summary measure) of the geodesic distance matrix.404

The cohesion matrix is also used as the basis for all methods of detecting cliques and other405

cohesive subgroups (e.g.Alba and Kadushin, 1976; Burt, 1991). The myriad definitions and406

techniques of cohesive subgroups can be viewed as identifying clusters within the cohesion407

matrix. Interestingly, the Walk Property dimension that we have identified for centrality measures408

is also a key dimension in the classification of cohesive subgroups (Borgatti et al., 1990). As409

is well-known, the cohesive subgroup known as a clique is characterized by having maximum410

density (number of ties) and minimum distance (length of paths). Since its formalization byLuce411

and Perry (1949), subsequent researchers have sought to relax the definition of clique by relaxing412

either the distances among members of the subgroup, or the number of ties (i.e., walks of length413

1). Concepts such as n-cliques, n-clans, and n-clubs relax the minimal distance property of the414

clique, while concepts such as k-plexes, k-cores, ls-sets, and lambda-sets relax the maximum415

density property of cliques. In short: length versus volume.416

Similarly, what centrality measures do is summarize the amount (and type) of dyadic cohesion417

that each node is involved in. In effect, centrality measures are indices of the share of dyadic418

cohesion attributable to each node. For comparison, whole network measures of cohesion, such419

as density or characteristic path length, are exactly like centrality measures except that instead420

of breaking out the summary by node, the entire cohesion matrix is summarized, much like the421

grand marginal in a contingency table.422

Thus, a basic claim of the graph-theoretic typology presented here is that dyadic cohesion423

provides a common basis for not only centrality measures but subgroups and network cohesion.424

In this way, our analysis provides a sense of continuity with the other major areas of network425

analysis.426

Another benefit that the typology provides is a partial answer to the commonly asked question427

of how to choose among centrality measures. The typology essentially divides measures into428

groups that, to put it in marketing terms, are more competitive with each other than with other429

measures. Our claim is that measures within the same box inTable 1are similar enough on key430

attributes that they can be thought of as competitive, i.e., as potentially substitutable alternatives431

for each other. Among measures within each box, we can reasonably ask which is better. In432

contrast, measures in different boxes differ in fundamental ways, and are perhaps best viewed as433

complementary.434

5. Radial measures and the core periphery assumption435

It is apparent that all radial measures are constructed the same way. First one defines an actor-436

by-actor matrixW that records the number or length of walks of some kind linking every pair of437

actors. Then one summarizes each row ofW by taking some kind of mean or total. Thus, centrality438

provides an overall summary of a node’s participation in the walk structure of the network. It is a439

measure of how much of the walk structure is due to a given node. It is quite literally the node’s440

share of the total volume or length of walks in the network.441
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Thus, the essence of a radial centrality measure is this: radial centrality summarizes a node’s442

connectedness with the rest of the network. To the extent that dyadic cohesion is seen as index-443

ing influence (e.g.,Katz, 1953; Hubbell, 1965; Friedkin, 1991), the centrality measure judges444

the overall influence of an actor. If the cohesion matrix is adjacency (as in degree centrality),445

and adjacency matrix represents the “friend of” relation, then centrality summarizes an actor’s446

“friendliness”.447

This raises a question. Under what conditions does it make sense to summarize, with a single448

value, a node’s cohesion with all others? Consider the mean of any list of numbers. It can always449

be computed, but only serves as a summary when the distribution of the numbers is unimodal.450

Indeed, if the list is known to be normally distributed, the mean and standard deviation alone451

can generate the entire distribution. But if the shape of the distribution is bimodal, the mean is452

a very poor summary. If the ideal serving temperature of tea is in the range of 35–50◦ for much453

of the population (because they like iced tea) and the ideal serving temperature is in the range454

of 130–160◦ for the other half of the population (because they like hot tea), is the average of the455

ideal temperatures provide a good assessment of the population’s tastes? That is, does a luke-warm456

temperature of 97.5◦ provide a good picture of what the people’s tastes are? Probably not.457

A radial centrality measure is clearly interpretable in a network in which dyadic cohesion is458

unimodal, but not in one which is multimodal. That is to say, radial centrality makes sense in459

networks which have, at most, one center. This means that a cohesive subgroup analysis would460

find only one subgroup (a core) to which all nodes belong to a greater or lesser extent. The network461

would not be divided in two or more subgroups. In that case, radial centrality would effectively462

serve as a measure of “coreness” (Borgatti and Everett, 1999; Everett and Borgatti, 2004), which463

is to say, strength of membership in the one and only group.Bonacich (1972)has noted that464

if a network contains more than one component (i.e., a maximal set of nodes that are mutually465

reachable), eigenvector centrality will assign zeros to all nodes not in the largest component,466

even if they are highly central in their own component. Rather, those nodes load highly on the467

remaining eigenvectors. In other words, the eigenvectors of a cohesion matrix measure strength468

of involvement of each node to each major subgroup (component).469

Before we can interpret a radial measure of centrality, we must determine whether the network470

satisfies the one-group requirement. A network will exhibit a core-periphery pattern whenever its471

cohesion matrix can be modeled as a non-negative function of its marginals (Borgatti and Everett,472

1999). For example, if the cohesion matrixW is a valued adjacency matrix in whichwij gives the473

number of interactions observed betweeni andj, and the model of independence holds (i.e., no474

interaction), then the network has a core-periphery structure. This is because the independence475

model specifies that the extent of dyadic cohesion between nodesi and j is proportional to the476

product of their general proximity to anyone (i.e., their centrality). Hence, the only region of the477

network with high densities of proximity will be populated by high centrality nodes, and there will478

only be one such region. This pattern of distribution of proximities is precisely a core-periphery479

structure.480

Interestingly, one measure of centrality “comes with” such a test built-in: Bonacich’s eigen-481

vector centrality. The eigenvectors and eigenvalues of any symmetric matrix can be multiplied to482

recreate the matrix, as shown in Eq.(12):483

A = V ′DV

aij =
∑

k

vikekvjk
(12)484
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In the equation,V is ann × n matrix whose columns are the eigenvectors ofA, the matrixD is485

a diagonal matrix of eigenvalues, ande rewrites those eigenvalues as a simple vector such that486

ek = dkk. If the summation is performed for allk ranging from 1 ton, the approximation is exact.487

If the summation is performed using fewer thann eigenvectors, the approximation is as close as488

possible under a least squares criterion. Since eigenvector centrality is defined as the eigenvector489

of A with the largest eigenvalue, it is the single best vector for estimating the values ofA under490

the following simple model:491

aij = λEIG
i cEIG

j (13)492

According to the equation, the existence (or strength) of the tie between nodesi andj is approxi-493

mated by the product of their centralities (adjusted byλ, which serves as a scaling constant). The494

accuracy of the approximation is roughly indexed by the size of the eigenvalue, relative to the495

others. If all other eigenvalues are near zero, the approximation will be nearly perfect. Thus, the496

model fits when the eigenvector centrality alone is sufficient to reproduce the observed pattern of497

ties. When this occurs, the network necessarily exhibits a core-periphery pattern15. The relative498

size of the largest eigenvalue can therefore be interpreted as indicating the extent to which the499

network has a core-periphery structure.500

The fit of a core-periphery model to an observed network may be seen as a generalized measure501

of network centralization.Freeman (1979)defines centralization as the sum of differences between502

the centrality of the most central node and all other nodes, divided by the same sum calculated503

on a star graph with the same number of nodes. The idea is that the star epitomizes the ideal of504

a centralized network, and Freeman’s statistic gives the extent to which the observed network505

conforms to the ideal type. It is, therefore, a measure of fit between a network and an ideal model.506

The difference is in the choice of ideals. The star is only one example of a network structured507

as a core and periphery. What about networks with more than one node in the core? What about508

networks with nodes that are neither central nor peripheral, but somewhere in between? The509

core-periphery model can include networks with all of these characteristics.510

Since the generic formula for a radial centrality measure is511

ci =
∑

j

wij, (14)512

radial centrality can be seen as a partitioning of total network cohesion (ΣΣwij) by actor. The513

centrality of a node is its share of, or contribution to, total cohesion. If the number of nodes in514

the network is fixed, the total cohesion is a measure of overall cohesive density, and centrality is515

a node’s contribution to that density.516

However, in general we cannot view centrality asgenerating cohesion. The core-periphery517

model does not necessarily carry with it aprocess model. Consider, for example, fitting the518

independence model to aW matrix whose cells record the number of paths from each node to519

every other. If the model fits well, we are safe in concluding that the data form a core-periphery520

structure, and therefore ak-path centrality measure has a reasonable interpretation. But we have not521

specified a theory that explains how an underlying attribute of actors causes the observed pattern522

of paths. Such a theory is difficult to construct. If the cohesion matrix were simple adjacency for523

15 Of course, all nodes can have equal centrality and satisfy the model, in which case we might either choose to regard
all nodes as core or all nodes as periphery. The big point is that such a model cannot generate a structure with two or more
cores (i.e. subgroups).
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the “friend of” relation, it is plausible that a property of actors (e.g. friendliness) might determine524

the probability of forming a tie with another actor (cf.,Holland and Leinhardt, 1981). But it525

is difficult to understand how friendliness works to create a specific number ofpaths or walks,526

since walks are as much functions of all the other nodes as they are of the two endpoints. Thus527

most centrality measures should be thought of as summaries of a node’s position in a one-group528

core-periphery structure, but not as parameters that generate that structure.529

It should be noted that medial measures of centrality do not make the same one-group assump-530

tion. These measures correctly assign particularly high centrality scores to nodes serving as bridges531

between subgroups. However, it is still the case that it is difficult to interpret a given value of532

medial centrality without knowing the group’s cohesive structure. For example, the center of a533

sociometric star (a core-periphery structure) is not only highly medial, it is also central in more534

conventional, radial, ways as well (i.e., it is “in the thick of things”). In contrast, the liaison535

between several different subgroups can be very high on a medial centrality measure, and yet be536

only peripheral to each subgroup.537

Some empirical evidence or the fundamental difference between medial and radial measures538

may be found in a study byNakao (1990). She computed Freeman’s graph centralization mea-539

sures on all possible graphs of 4, 5, 6, 7, and 8 nodes. After computing correlations among the540

measures for each size of network, she concludes: “These correlations show that the betweenness-541

based centrality measure behaves somewhat differently from the other two measures, indicated542

by lower correlations. The degree-based measure and the closeness-based measure are related543

very closely in a linear manner.” She also notes that “The graphs whose order of centrality values544

is CBET > CCLO > CDEG tend to be divided into sub-clusters that are connected to each other by545

a line or via a focal point. This type of graph may be characterized as a decentralized network,546

in the manner defined in organizational research. On the other hand, the graphs which produce547

CCLO > CDEG > CBET would be described as one-cluster networks which contain a circle involving548

a large proportion of points in the network.”549

6. Discussion550

The differences between radial and medial measures discussed in the last section suggest that551

this distinction more important than the volume versus length distinction. In choosing between552

volume and length measures, one is choosing between different conceptions of cohesion. It seems553

plausible to suggest that, for a given theoretical application, it is possible to say that one is better554

than the other. For example, if one is studying risk of receiving in a timely manner something555

flowing through the network, it would seem that length measures makes the most sense since556

they map directly to the expected arrival times (Borgatti, 1995). When the concern is with the557

certainty of arrival of something flowing through the network, volume measures would seem like558

an obvious choice.559

In contrast, the choice between radial and medial measures can be seen in terms of the distinct560

roles played by nodes in the network. For example, consider a cohesion matrixW defined as the561

number of the paths between all pairs of nodes. Thus, there exists an inventory of every path in562

the network. A radial measure of volume counts the number of these paths in which a given node563

serves as an endpoint. A medial measure counts the number of these paths in which the node564

serves as an interior point. Together, the radial and the medial add up to the total number of paths565

that a node is involved with in any role. In this sense, we can speak of decomposing a node’s566

total involvement in the paths of a network into radial and medial portions, as shown in Eq.(15).567

If so, radial and medial measures are complementary and both are needed to deliver a complete568
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picture of a node’s contribution to the network (cf.,Friedkin, 1991). Whereas radial measures569

assess group membership, medial measures assess bridging, reminiscent of the distinction in the570

social capital literature of bonding social capital and bridging social capital, or closed versus open571

ego networks.572

Total Involvement= Radiality+ Mediality (15)573

It should be noted that, for most of the field of centrality, this decomposition is metaphorical574

rather than literal. It is literally accurate for the specific example given, but not elsewhere. For575

example, while nodes can only be in one position on a path, they can occur in multiple positions576

in a trail or walk, so that radial and medial counts no longer add to the total number of sequences.577

In addition, measures like Freeman’s betweenness do not just count the number of times a node578

occupies an interior position of a geodesic, but weight those times according to exclusivity.579

7. Conclusion580

FollowingSabidussi (1966), we have described the notion of centrality in purely graph-theoretic581

terms: what all measures of centrality do is assess a node’s involvement in the walk structure582

of a network. This is the graph-theoretic answer to the question ‘What do centrality measures583

measure?’ We have suggested that centrality measures differ along four key dimensions: choice of584

summary measure, type of walk considered, property of walk assessed, and type of involvement.585

The choice of summary dimension has the least variance, consisting mostly of simple sums and586

averages, along with a few exemplars of weighted sums (e.g., eigenvectors) and centroids. The587

type of walk dimension distinguishes measures based on edges, geodesics, paths, trails and walks.588

The property of walk dimension distinguishes between volume and length measures. The type of589

involvement dimension distinguishes between radial and medial measures.590

It can be seen that the single distinction made by Borgatti (2004) between frequency (measuring591

how often something flows across a node) and time (how soon something flows to a node) can592

be derived as a collapsing of the property of walk and type of involvement dimensions. That593

is, the frequency-based measures in Borgatti (2004) are medial-volume measures in the present594

terminology while the time-based measures correspond to radial-length measures. In addition, the595

cross-classification of measures by type of involvement and property of walk results in a four-fold596

classification that is not inconsistent withFreeman’s (1979) three-fold categorization.597

Radial measures in particular are reductions via aggregation operators of pairwise proximi-598

ties to attributes of nodes or actors. These aggregations range from simple marginals (degree)599

to weighted marginals (eigenvectors) to distances along euclidean axes (centroid). The types of600

reductions correspond to standard statistical scaling and modeling techniques: simple marginals601

correspond to fitting the log-linear model of quasi-independence to a square, symmetric table602

with missing diagonals; eigenvectors correspond to factoring a correlation or covariance matrix;603

and euclidean axes correspond to a one-dimensional MDS scaling of a cohesion matrix. Not sur-604

prisingly, the usefulness and interpretability of radial measures depends on the fit of the cohesion605

matrix to the one-dimensional model, just as in univariate statistics the mean is most interpretable606

when applied to a unimodal distribution.607

As discussed byBorgatti and Everett (1999), a network that is fit by a one-dimensional model608

has a core-periphery structure in which all nodes revolve more or less closely around a single609

core. Thus, radial centrality measures are most interpretable when the cohesion matrix passes a610

test of core-peripheriness, in which case the measures can be viewed as measures of “coreness”.611
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Just as radial measures were shown to largely reduce to marginals of a cohesion matrixW,612

medial measures were also reduced to a common formulaic structure that we referred to as613

proportion reduction in cohesion. As such, medial measures essentially measure the impact of the614

presence of a node on the dyadic cohesion among all pairs of nodes. In other words, they measure615

the change in cohesion that would result from removing a given node. As such, medial measures616

do not depend on core/periphery structures for interpretability, and in fact are particularly useful617

when networks have “clumpy” structures characterized by wide variation in local density.618

At a general level, we note the relationship of centrality concepts with the concepts of graph619

cohesion and cohesive subgroups. The key underlying concept is that of dyadic cohesion—the620

social proximity of pairs of actors in a network. Dyadic cohesion is what is measured by theW621

matrix that undergirds all measures of centrality. There are two fundamental ways of analyzing622

cohesion. One is to seek regions of the network that are more cohesive than others—a focus on623

the pattern of cohesion. This constitutes the field of cohesive subgroups. The other is to attribute624

to individual nodes their share of responsibility for the cohesion of the network—a focus on the625

amount of cohesion. This constitutes the field of centrality measures. Within that, two fundamental626

approaches are discernable—the radial approach that directly partitions total cohesion by node,627

and the medial approach that assesses a node’s contribution to cohesion by removing it. The other628

fundamental distinction—between volume and length measures—is essentially an argument about629

the meaning of cohesion.630
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