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Abstract A procedure is described for finding sets of key players in a social network. A

key assumption is that the optimal selection of key players depends on what they are needed

for. Accordingly, two generic goals are articulated, called KPP-POS and KPP-NEG. KPP-

POS is defined as the identification of key players for the purpose of optimally diffusing

something through the network by using the key players as seeds. KPP-NEG is defined as

the identification of key players for the purpose of disrupting or fragmenting the network by

removing the key nodes. It is found that off-the-shelf centrality measures are not optimal for

solving either generic problem, and therefore new measures are presented.

Keywords Social networks · Centrality · Cohesion

1. Introduction

The problem of identifying key players in a social network is, at first glance at least, an

old one. One stream of relevant research is node centrality (e.g., Bonacich, 1972; Freeman,

1979), which attempts to quantify the structural importance of actors in a network. In addition,

work on identifying cores and peripheries (e.g., Seidman, 1983; Borgatti and Everett, 1999;

Everett and Borgatti, 1999a) is relevant, as is work on group-level centrality (Everett and

Borgatti, 1999b). Structural measures of social capital (e.g., Coleman, 1990; Burt, 1992;

Borgatti, Jones and Everett, 1998) also tend to identify key players, although the perspective

is reversed in that with social capital research one asks what features of the network contribute

to the individual, whereas with key player research we ask which individuals are important

for the network.

However, in this paper I attempt to show that existing measures and algorithms do not

optimally solve the key player problem as I define it, and that new approaches are needed.

The approach I explore is based on measuring explicitly the contribution of a set of actors to
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the cohesion of a network. In addition, I identify two separate conceptions or functions of key

players which reflect different analytical goals, and develop separate measures of suitability

for each type of goal. In this sense, I follow the problem-specific approach to centrality

advocated by Friedkin (1991).

2. Defining the problem

I argue that there are two fundamentally different aspects of the key player issue, reflecting

different kinds of purposes to which key player measurements and identifications are put.

Effectively, there are two separate key player problems.

The first key player problem is defined in terms of the extent to which the network

depends on its key players to maintain its cohesiveness. I refer to this as the “Key Player

Problem/Negative” (KPP-Neg) because we measure importance in the breach—the amount

of reduction in cohesiveness of the network that would occur if the nodes were not present.

KPP-Neg arises in the public health context whenever we need to select a subset of population

members to immunize or quarantine in order to optimally contain an epidemic. In the military

or criminal justice context the problem arises when we need to select a small number of players

in a criminal network to neutralize (e.g., by arresting, exposing or discrediting) in order to

maximally disrupt the network’s ability to mount coordinated action.

The second key player problem is defined in terms of the extent to which key players

are connected to and embedded in the network around them. I refer to this as “Key Player

Problem/Positive” (KPP-Pos). A practical application in which KPP-Pos arises in a public

health context is when a health agency needs to select a small set of population members to use

as seeds for the diffusion of practices or attitudes that promote health, such as using bleach to

clean needles in a population of drug addicts. Another application arises in an organizational

context when management wants to implement a change initiative and needs to get a small

set of informal leaders on board first, perhaps by running a weekend intervention with them.

Finally, the problem arises in a military or criminal justice context when one needs to select

an efficient set of actors to surveil, to turn (as into double-agents), or to feed misinformation

to. In all these cases, we are looking for a set of network nodes that are optimally positioned

to quickly diffuse information, attitudes, behaviors or goods and/or to quickly receive the

same.

A formal definition, then, of the key player problems is as follows. Given a social network

(represented as an undirected graph), find a set of k nodes (called a kp-set of order k) such that,

1. (KPP-Neg) Removing the kp-set would result in a residual network with the least possible

cohesion.

2. (KPP-Pos) The kp-set is maximally connected to all other nodes.

Of course, these introductory definitions leave out what is meant precisely by “least possible

cohesion” and “maximally connected”. Part of the process of solving these problems is

providing definitions of these concepts that lead to feasible solutions and useful outcomes.

However, it can be said at the outset that KPP-Neg involves fragmenting a network into

components, or, failing that, making path lengths between nodes so large as to be practically

disconnected. In contrast, KPP-Pos involves finding nodes that can reach as many remaining

nodes as possible via direct links or perhaps short paths. However, a goal of my approach

is to construct generic solutions to each problem such that they can be used no matter how

cohesion or connectedness is defined.
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Fig. 1 Hypothetical network in which removing the most central node (“1”) does not fragment the network

At first glance, both KPP-Neg and KPP-Pos would appear to be easily solved by selecting

an appropriate measure of node centrality and selecting the k most central nodes to populate

the kp-set. Alternatively, there are concepts in graph-theory that seem tailor-made for both

KPP-Neg and KPP-Pos. However, it turns out that, for both KPP-Neg and KPP-Pos, these

approaches fail for two separate reasons, which I label the goal issue and the ensemble issue.

The goal issue refers to the fact that centrality measures were not designed with KPP-Neg or

KPP-Pos specifically in mind, and hence are not necessarily optimal solutions. The ensemble

issue refers to the fact that KPP-Neg and KPP-Pos are explicitly about selecting sets of nodes

rather than individuals, and the optimal set for any task is not necessarily composed of the k
most-optimal individuals when considered alone.

In the next two sections, I describe and address each issue.

3. The goal issue

For KPP-Neg, the most appropriate centrality measure would obviously be betweenness

(Freeman, 1979). Freeman’s betweenness measure sums the proportion of shortest paths from

one node to another that pass through a given node. Thus, a node with high betweenness is

along the shortest path between many pairs of nodes, and deleting that node should cause

many pairs of nodes to become fully disconnected or at least more distantly connected.

However, the optimality of betweenness in identifying the node whose removal from the

network would most reduce cohesion is not guaranteed under typical definitions of cohesion.

Consider the network in Fig. 1. Node 1 has the highest centrality on all standard measures,

including betweenness centrality. Yet deleting node 1 has no effect on disconnecting the

network. Distances between nodes do increase somewhat, but if fragmentation is the goal,

it is clear that removing node 1 is ineffective. In contrast, deleting node 8, which has lower

centrality on all measures, does disconnect the graph. Removing node 8 splits the graph into

two large fragments (i.e., components).

Whereas measures of centrality were not developed with problems like KPP-Pos and

KPP-Neg in mind, a number of graph-theoretic concepts were. For example, much work has

been done on the vulnerability of graphs to disconnection, which relates directly to KPP-Neg.

In particular, there is the notion of a cutpoint, which is a node whose deletion would increase
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Fig. 2 Hypothetical network in
which the most central node (“4”)
does not reach the most number
of nodes in two steps or less

the number of components in the graph. However, there are three difficulties with using

cutpoints in the KPP context. First, no account is taken of the size of components created

by the removal of a cutpoint. If removing the cutpoint merely isolates a single node, leaving

all other nodes connected, this is not seen as better than removing a cutpoint which divides

the network into two equal sized components. Second, if the graph contains no cutpoints,

the concept provides no way of choosing a node whose deletion would nearly disconnect

the graph or which would make distances so long as to be practically disconnected. Third,

cutpoints are a kind of discrete nominal classification rather than a measurement of the extent

to which removing a node fragments a network.

Turning now to KPP-Pos, if we formulate the problem in terms of identifying a node that

reaches the most nodes directly (i.e., paths of length 1), simple degree centrality is in fact

optimal. However, if we formulate it in terms of reaching the most nodes in up to m steps,

then the most appropriate standard centrality measure is closeness centrality, and this falls

short. Closeness centrality is defined as the sum of graph-theoretic distances from a given

node to all others in the network. For example, in the graph shown in Fig. 2, node 4 has the

best closeness centrality (it is a total of 24 links away from all others). However, if we are

interested in reaching the most nodes along paths of length 2 or less, node 3 would be a better

choice since it can reach 8 nodes in addition to itself while node 4 can only reach 6 nodes.

4. The ensemble issue

The ensemble issue, which is discussed as the group centrality problem in Everett and Borgatti

(1999b), refers to the fact that selecting a set of k nodes that, as an ensemble, optimally

solves KPP-Pos or KPP-Neg, is quite different from selecting the k nodes that individually

are optimal.

To start with, consider KPP-Neg. Figure 3 shows a graph in which nodes h and i are,

individually, the best nodes to delete in order to fragment the network. Yet, deleting i in

addition to h yields no more fragmentation, by any measure, than deleting i alone. In contrast,

node m is not individually as effective as node i in separating pairs of nodes, but deleting

m with h does produce more fragmentation than m or h alone. The reason that i and h are

not as good together as h and m is that i and h are redundant with respect to their liaising

role—they are equivalent in that they connect the same third parties to each other. Another

way to look at it is that the centrality of one is due in part to the centrality of the other (i.e.,

their centralities are not independent), with the result being that the centrality of the ensemble

combination is quite a bit less than the sum of the centralities of each.
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Fig. 3 Network in which removing the two most central nodes (“i” and “ j”) is not as disruptive as removing
a different pair of nodes (“i” and “ j”)

Similarly, the graph-theoretic concept of a vertex cut-set generalizes the cutpoint to address

the ensemble issue directly. A vertex cutset is a set of nodes whose removal would increase

the number of components in the graph. Most graph-theoretic work has focused on minimum

weight cutsets, which are smallest sets that have the cutset property. However, cutsets retain

many of the same difficulties as cutpoints when applied to the KPP-Neg problem. First, we

cannot specify the number of nodes in the set and then seek the set of that size that does

the best job (rather, the measure of success is fixed and cutset methods are able to find a

smallest set that achieves that level of success). In this sense, the graph-theoretic approach

solves the inverse of the problem we seek to solve. Second, no account is taken of the size

of components created by the cut. A cut that isolates a single node is no better than one

that divides the graph into equal size components. Third, no account is taken of distances

among nodes. Hence a set whose removal would not only cut the network in half but also

lengthen distances within each half would not be considered better than one that merely cut

the network in half.

A redundancy principle also applies to KPP-Pos. Consider the graph in Fig. 4. Nodes a
and b are individually the best connected. Each is adjacent to five other nodes, more than any

other by far. But together they reach no more than either does alone. In contrast, if a is paired

with c (which individually reaches only three nodes), the ensemble reaches every node in the

network. The reason that {a,c} is more effective than {a,b} is that a and c are less structurally

equivalent (Lorraine and White, 1971; Burt, 1976) than are a and b. Structural equivalence

refers to the extent to which two nodes have overlapping neighborhoods—i.e., are connected

to the same third parties. Structurally equivalent nodes are, by definition, redundant with

Fig. 4 Network in which the two
most central nodes taken together
(“a” and “b”) are adjacent to
fewer nodes than a different set of
nodes (“a” and “c”)
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respect to adjacency and distance. Thus, the redundancy relevant to KPP-Pos is with respect

to adjacency and distance, whereas the redundancy relevant to KPP-Neg is with respect to

bridging (i.e., linking the same third parties).

For KPP-Pos, applicable graph-theoretic concepts include vertex covers and dominating

sets. A vertex cover is a set of nodes whose members are incident upon every edge in the

graph. A dominating set is a (typically minimal) set of nodes whose members are adjacent

to all other nodes in the graph. For our purposes these are equivalent and fail for exactly the

same reasons that cutsets fail for KPP-Neg. The focus of graph-theoretic research has been

on finding the smallest cover or dominating set that achieves a fixed goal (reaching all nodes)

perfectly. Our problem is the reverse: finding a set of fixed size that achieves the goal as well

as possible. In addition, we would prefer to measure the extent to which a set reaches all

nodes, so that we can evaluate our success.

5. Proposed solution

5.1. KPP-Neg: Fragmentation

The fundamental concept implicit in KPP-Neg is graph fragmentation. What is needed to

solve the problem is a direct measure of graph fragmentation. With that we can then evaluate

any candidate set of nodes in terms of how successful it is in solving KPP-Neg.

Perhaps the most obvious measure of network fragmentation is a count of the number of

components. If the count is 1, there is no fragmentation. The maximum fragmentation occurs

when every node is an isolate, creating as many components as nodes. For convenience, we

normalize the count (labeled C in Eq. (2)) by dividing by the number of nodes (labeled n).

COMP F = C

n
(2)

The problem with this measure is that it doesn’t take into account the sizes of the components.

For example, in Fig. 3, deleting node m would break the network into two components, but the

vast majority of nodes remain happily connected. In contrast, deleting node i (or h) would also

result in just two components, but more pairs of nodes would be separated from each other.

This suggests another measure of fragmentation that simply counts the number of pairs of

nodes that are disconnected from each other. Given a matrix R in which ri j = 1 if i can reach

j and ri j = 0 otherwise, we can define the new measure as shown in Eq. (3). This measure

is the same as subtracting Krackhardt’s (1994) measure of connectivity from unity.

F = 1 − 2
∑

i

∑
j<i ri j

n(n − 1)
(3)

One problem with Eq. (3) is that it is relatively expensive to compute (at least in the optimiza-

tion context that is introduced in a later section of this paper). However, since nodes within

a component are mutually reachable, and since components of graph can be enumerated

extremely efficiently, the F measure can be computed more economically by rewriting it in

terms of the sizes (sk) of each component (indexed by k):

F = 1 −
∑

k sk(sk − 1)

n(n − 1)
(4)

Springer



Comput Math Organiz Theor (2006) 12: 21–34 27

The F measure is remarkably similar to a diversity measure known variously as heterogeneity,

the concentration ratio, the Hirschman-Herfindahl index, or the Herfindahl index. Applied to

the current context, that measure is defined as follows:

H = 1 −
∑

k

(
sk

n

)2

(5)

One difference between F and H is that while both achieve minimum values of 0 when the

network consists of a single component, the H measure can only achieve a maximum value

of 1 − 1/n when the network is maximally fragmented (all isolates). Interestingly, if we try

to normalize H by dividing by 1 − 1/n, we obtain the F measure, as shown in Eq. (6).

H∗ = 1 − ∑
k

( sk
n

)2

1 − n−1
= 1 −

∑
k sk(sk − 1)

n(n − 1)
= F (6)

An alternative approach is information entropy. Applied to this context, the measure is defined

as

E = −
∑

k

sk

n
ln

( sk

n

)
(7)

The measure is bounded from below at zero, but is unbounded from above. We can bound it

by dividing it by its value when all nodes are isolates:

E =
∑

k
sk
n ln

( sk
n

)∑
k ln

( sk
n

) (8)

While the fragmentation measure F and the entropy measure E are very satisfactory for what

they do, they do not take into account the shape—the internal structure—of components.

A network that is divided into two components of size 5 in which each component is a

clique (Fig. 5(a)) is seen as equally fragmented as a network divided into two components

of size 5 in which each component is a line (Fig. 5(b)). Yet distances and therefore trans-

mission/transportation times are much higher in the latter network. As Granovetter (1973)

noted, nodes don’t have to be truly disconnected in order to be practically disconnected—if

distances are long enough, the nodes are effectively separated.

In addition, there is another problem which is that in some cases the required size of the

kp set is small enough that no set of that size disconnects the graph. Yet we would still like

some way of evaluating which sets are better than others in terms of nearly disconnecting

many pairs.

An obvious solution would be to measure the total distance between all pairs of nodes in

the network, and take this as a measure of virtual disconnection. However, this only works

in the case where the graph remains connected. Otherwise, we must sum infinite distances.

A practical alternative is to base the measure on the sum of the reciprocals of distances,

observing the convention that the reciprocal of infinity is zero. In that case we can create a

version of F , based on Eq. (2), that weights by reciprocal distance. Effectively, we replace

the simple rij in the equation (which has values of 0 or 1 indicating whether a pair is mutually
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Fig. 5 (a) D F = 0.556 and (b) D F = 0.715

reachable or not) with 1/dij, which provides a degree of reachability that varies from 0 to 1.

D F = 1 −
2

∑
i> j

1
di j

n(n − 1)
(9)

The D F measure is identical to F when all components are complete (i.e., each component is

also a clique). However, when distances within components are greater than 1, the measure

captures the relative cohesion of the components. For example, the graph in Fig. 5(a) has

two components of size 5 and the D F measure is 0.556. The graph in Fig. 5(b), which is less

cohesive, also has two components of size 5, but the D F measure is 0.715, indicating much

less cohesion. Like the F measure, D F achieves its maximum value of 1.0 when the graph

consists entirely of isolates.

5.2. KPP-Pos: Inter-set cohesion

The fundamental concept implicit in KPP-Pos is the connection or cohesion that members of

one set of nodes (the kp set) have with members of another (the remainder of the network).

To solve the problem, we need a direct measure of the amount of connection between a set

and the rest of the graph.

Thus, we want to define a function, CK , which gives the amount of cohesion between

members of the set K and the remainder of the network (V-K). As a starting point, we might

define the following measure (Borgatti, Everett and Shirey, 1992), in which ai j = 1 if node
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i is adjacent to node j and ai j = 0 otherwise:

CK =
∑

i∈K , j∈V −K

ai j (10)

However, as Everett and Borgatti (1999b) note, this simplistic approach ignores the structural

equivalence of set members, essentially double-counting ties to the same individuals. Instead,

we would like to define a slightly more sophisticated type of measure, as follows:

CK =
∑

j∈V −K

⋃
i∈K

ai j (11)

In the equation, the operation ∪ is a non-specific aggregation function such as taking the

minimum or the maximum. If ∪ is the maximum function, then CK is defined as the number

of distinct nodes outside of K that members of K are adjacent to. This is identical to Everett

and Borgatti’s (1999b) notion of group degree centrality.

In addition to this measure, we would like another measure that incorporates the notion

of distances, as we did with fragmentation. The reasons are the same: Two groups of a given

size may be adjacent to the same number of nodes, but with one group the unreached nodes

may only be one link away, while with the other they may be very distant—so distant as to

preclude diffusion in a reasonable amount of time.

A simple approach, termed the m-reach measure, is to replace adjacency with reachability,

such that mri j = 1 if i can reach j via a path of length m or less, and mri j = 0 otherwise.

If we take the ∪ operation to be the maximum function, then we can express the m-reach

measure as follows:

CK =
∑

j∈V −K

⋃
i∈K

mri j (12)

M-reach, then, is a count of the number of unique nodes reached by any member of the

kp-set in m links or less. The advantage of this measure is its ease of interpretation. The

disadvantages are that (a) it assumes that all paths of length m or less are equally important

(when in fact a path of length 1 is likely to be more important than a path of length 2), and

(b) that all paths longer than m are wholly irrelevant.

A more sensitive measure, to be called distance-weighted reach, can be defined as the sum

of the reciprocals of distances from the kp-set S to all nodes, where distance from the set to

a node is defined as the minimum distance. This measure is given in Eq. (13).

CK =
∑

j∈V −K

⋃
i∈K

1

di j
(13)

For convenience of interpretation, it is useful to regard all distances within the KP set to

be unity, and let the summation occur over all nodes. It is also convenient to normalize the

measure to run between 0 and 1. At the same time, we can also simplify the notation by

defining dK j to be the minimum distance from any member of K to node j , yielding the final

measure shown in Eq. (14).

D R =
∑

j
1

dK j

n
(14)
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1. Select k nodes at random to populate set S
2. Set F = fit using appropriate key player metric
3. For each node u in S and each node v not in S

a. DELTAF=improvment in fit if u and v were swapped
4. Select pair with largest DELTAF

a. If DELTAF <= then terminate
b. Else, swap pair with greatest improvement in fit and set F=F + DELTAF

5. Go to step 3

Fig. 6 Greedy optimization algorithm

Taking some interpretive license, we can view D R as the weighted proportion of all nodes

reached by the set, where nodes are weighted inversely by their minimum distance from the

set and only nodes at distance 1 are given full weight. Hence, D R achieves a maximum value

of 1 when every outside node is adjacent to at least one member of the kp-set (i.e., the kp-set

is a dominating set). The minimum value of 0 is achieved when no member of the kp-set

belongs to the same component as any node outside the kp-set—i.e., the kp-set is completely

isolated.

5.3. Selecting a KP-set via combinatorial optimization

Since the straightforward heuristic of simply choosing the top k players fails, we must seek

another way. One approach is to seek modifications of the top k player heuristic that address

some of its weak points. For example, we could begin by choosing the top individual player,

and then add the next best individual player that is least redundant with those already selected.

Another approach is to simultaneously select the k members of the kp-set via combinatorial

optimization. This is the approach taken in this paper.

If we represent a solution to either KPP-Pos or KPP-Neg as a string S of 1s and 0s where

si = 1 if node i is a member of the proposed kp-set and si = 0 otherwise, then it is easy

to apply a number of off-the-shelf optimization algorithms to find S, such as tabu-search

(Glover, 1986), K-L (Kernighan and Lin, 1970), simulated annealing (Metropolis et al.,

1953) or genetic algorithms (Holland, 1975). Initial experiments suggest that all of these do

an excellent job on KPP, and so I present only a simple greedy algorithm. Figure 6 outlines

the method, which is normally repeated using dozens of random starting sets.

6. Proof of concept

The operation of the algorithm is illustrated empirically using two datasets. The first is a

network of acquaintances among known terrorists, the second is a network of advice-seeking

within a consulting company.

6.1. Terrorist dataset

The terrorist dataset, compiled by Krebs (2002), consists of a presumed acquaintance network

among 74 suspected terrorists. For the purposes of this analysis, only the main component

is used, consisting of 63 individuals.

The first question we ask (KPP-Neg) is which persons should be isolated from the network

in order to maximally disrupt the network. Let us assume that we can only isolate three people.
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Fig. 7 Terrorist network compiled by Krebs (2002)

A run of the algorithm using F measure selects the three red nodes identified in red in Fig. 7

(nodes A, B and C). Removing these nodes yields a fragmentation measure of 0.59, and

breaks the graph into 7 components (including two large ones comprising the left and right

halves of the graph).

The second question we ask (KPP-Pos) is, given that we would like to diffuse certain

information, which actors would we want to be exposed to the information so as to potentially

reach all other actors quickly and surely? Let us assume that information that travels more

than two links tends to degrade or be viewed with suspicion. Hence we want the smallest set

of nodes that can reach all others within two links or less (i.e., we use the m-reach criterion

with m = 2). The algorithm finds that a set of just three nodes (the square nodes in Fig. 7,

labeled A, C and D) reaches 100% of the network.

6.2. Advice-seeking dataset

These data consist of advice-seeking ties among members of a global consulting company,

reported by Cross, Borgatti and Parker (2002). The data were collected on a 1 to 5 strength-

of-tie scale, but for this analysis we examine only the strongest ties (rated 5). A diagram is

shown in Fig. 8.

We begin with a KPP-Neg analysis, and seek a small set of nodes to remove so as to

disconnect the graph. As shown in the figure, when we request a set of two nodes using the

distance-weighted fragmentation criterion, the algorithm selects the set {HB, WD}, which

gives a DF score of 0.817 and a division into four components (including one isolate). A

search for a set of three nodes yields {HB, WD, BM} with a score of 0.843 and a division

into six components (including three isolates).

Turning now to a KPP-Pos analysis, we seek a small set of nodes that are well connected

to the entire network. To begin, we use the criterion of simple adjacency. Table 1 shows the

Springer



32 Comput Math Organiz Theor (2006) 12: 21–34

Fig. 8 Strong advice-seeking ties in global consulting company

Table 1 Proportion of nodes
reached via paths of length 1 by
kp-sets of size 1 to 9

% of

Nodes Net

K Reached Reached KP-Set

1 10 31 {KR}
2 17 53 {BM,BS}
3 23 72 {BM,BS,NP}
4 26 81 {BM,BS,DI,NP}
5 27 84 {BM,BS,DI,KR,NP}
6 29 91 {BM,BS,DI,HB,KR,TO}
7 30 94 {BM,BS,BS2,DI,HB,PS,TO}
8 31 97 {BM,BS,BS2,CD,DI,HB,PS,TO}
9 32 100 {BM,BS,BW,BS2,CD,DI,HB,PS,TO}

proportion of the network reached by the optimal kp-set of sizes 1 through 9 via paths of

length 1. An examination of the results for a 3-node kp-set shows that the algorithm picks a

high degree node from each main cluster in the network, as one would expect.

Results are similar for the distance-weighted reach criterion. For example, for a 3-node

set, the algorithm selects {BM, KR, NP}, which is different in one node from the simple

adjacency criterion, but retains the pattern of selecting one well-connected node from each

cluster. For a 2-node set, the algorithm returns {HB, KR} which differs strongly from the

{BM, BS} pattern favored by the adjacency criterion. The {BM, BS} choice indicates a

strategy of picking the centers of the most populous clusters. In contrast, the {HB, KR}
selection indicates a strategy of being jointly close to as many nodes as possible, at the

expense of making a selection from the core of a cluster.
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7. Discussion

In this paper I have defined the key player problem and demonstrated why existing graph-

theoretic methods along with the naı̈ve centrality-based heuristic fail to solve the problem.

Basically, two issues are observed with respect to the centrality approach: the goal issue

and the ensemble issue. The goal issue refers to the fact that centrality measures were not

designed with either key player problem in mind, and hence are not optimal. The graph-

theoretic approaches solve the ensemble issue, and in many ways address the goal issue.

However, the problem they solve is in some ways the opposite of the problem we seek to

solve, in the sense that they fix the quality of the solution and search for the smallest solution,

whereas we wish to fix the size of the solution set and search for the best quality.

To address these issues, I have introduced a combinatorial optimization algorithm together

with a set of success metrics specifically designed for KPP-Neg and KPP-Pos. The metrics

for measuring success in the KPP-Neg problem are essentially measures of graph cohesion

that are useful descriptively in a number of contexts besides the key player problem. Typical

applications might be the comparison of similar organizations or using cohesion as a predictor

of group performance. The KPP-Pos metrics can similarly be adapted for use in measuring

both individual and group centrality. Actors occupying positions high on KPP-Pos measures

are well-placed to maximize utilization of resources flowing through the network, while

actors occupying positions high on KPP-Neg measures have the opportunity to maximize the

benefits of brokerage, gatekeeping and playing actors off each other.

The research reported here opens a number of avenues for future exploration. One area

of special interest concerns data quality. If the key player approach is to yield a practical

tool, we cannot simply assume perfect data. Rather, the method should be robust in the

face of errors in the data. Two approaches seem promising. First, there is the notion of not

optimizing too closely to the observed dataset. If the data are known to vary from the truth by

a given magnitude (e.g., 10% of observed ties don’t actually exist and 10% of observed non-

adjacent pairs are in fact adjacent), then we can randomly vary the data by this magnitude and

optimize across a set of “adjacent” datasets obtained in this way. The result is a kp-set that is

not necessarily optimal for the observed dataset, but will represent a high-quality solution for

the neighborhood of the graph as a whole. An alternative approach is to treat knowledge of

ties as probabilistic, modifying the KeyPlayer metrics accordingly. For example, if we knew

the probability of a tie between any two nodes, we could, in principle, work out the expected

distance (including infinity) between the nodes across all possible networks.1 KPP measures

based on distance and reachability could then be computed by substituting expected distance

for observed distance. The practical challenge here is to find shortcut formulas for expected

distance and connectedness that enable fast computation.

In addition, it is of interest to incorporate actor attributes into the key player metrics. In the

military context, communication among actors with redundant skills may sometimes be less

important than communication between actors with complementary skills. In the public health

context, it is helpful in slowing epidemics to minimize mixing of different populations (such

as when married women are linked to commercial sex workers via their husbands). Hence,

an additional criterion we would want to consider in fragmenting a network is maximizing

separation of actors with certain attributes.

1 Note that the problem being addressed here is certainty of observed data values, not probability that a tie
exists at a given moment. It is assumed in this approach that ties are fixed and not probabilistically emerging
as a function of node attributes or other ties. The dynamic nature of ties is a different phenomenon that wants
its own models.
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Finally, an interesting line of research concerns the interaction of the network structure

with key player metrics, and ultimately the ability of the algorithms to extract optimal sets.

For example, it appears that nodes achieve the highest values on the KPP-Pos metrics when

they are embedded in highly cohesive graphs. In such graphs, even small, easy-to-find kp-sets

will have relatively large scores. In contrast, high values on KPP-Neg measures will normally

occur only when the graph is not very cohesive. In such graphs, inexpensive heuristic methods

can yield results as good as those obtained by costlier optimization methods.
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