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Abstract 
 
Centrality measures, or at least popular interpretations of these measures, make implicit 
assumptions about the manner in which traffic flows through a network. For example, some 
measures count only geodesic paths, apparently assuming that whatever flows through the 
network only moves along the shortest possible paths. This paper lays out a typology of network 
flows based on two dimensions of variation, namely, the kinds of trajectories that traffic may 
follow (geodesics, paths, trails or walks), and the method of spread (broadcast, serial replication, 
or transfer). Measures of centrality are then matched to the kinds of flows that they are 
appropriate for. Simulations are used to examine the relationship between type of flow and the 
differential importance of nodes with respect to key measurements such as speed of reception of 
traffic and frequency of receiving traffic. It is shown that the off-the-shelf formulas for centrality 
measures are fully applicable only for the specific flow processes they are designed for, and that 
when they are applied to other flow processes they get the “wrong” answer. It is noted that the 
most commonly used centrality measures are not appropriate for most of the flows we are 
routinely interested in. A key claim made in this paper is that centrality measures can be 
regarded as generating expected values for certain kinds of node outcomes (such as speed and 
frequency of reception) given implicit models of how traffic flows, and that this provides a new 
and useful way of thinking about centrality.  
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1. Introduction 
 
Centrality is one of the most studied concepts in social network analysis. Numerous measures 
have been developed, including degree centrality, closeness, betweenness, eigenvector centrality, 
information centrality, flow betweenness, the rush index, the influence measures of Katz (1953), 
Hubbell (1965), and Hoede (1978), Taylor’s (1969) measure, etc.  
 
What is not often recognized is that the formulas for these different measures make implicit 
assumptions about the manner in which things flow in a network.1 For example, some measures, 
such as Freeman’s closeness and betweenness (Freeman, 1979), count only geodesic paths, 
apparently assuming that whatever flows through the network moves only along the shortest 
possible paths. Other measures, such as flow betweenness (Freeman et al, 1991) do not assume 
shortest paths, but do assume proper paths in which no node is visited more than once. Still other 
measures, such as Bonacich’s (1987; 1992) eigenvector centrality and Katz’s (1953) influence, 
count walks, which assume that trajectories can not only be circuitous, but revisit nodes and lines 
multiple times along the way. Regardless of trajectory, some measures (e.g., betweenness) 
assume that what flows from node to node is indivisible (like a package) and must take one path 
or another, whereas other measures (e.g., eigenvector) assume multiple “paths” simultaneously 
(like information or infections). 
 
What happens when we apply a measure that assumes a given set of flow characteristics to a 
flow with different characteristics? One of two things must happen: either we lose the ability to 
fully interpret the measure (as when we compute the mean of a nominal-scaled variable) or we 
get poor answers (as when we use linear regression to predict values of a dependent variable, 
when the relationship is actually non-linear).  
 
Thus, the immediate objectives of this paper are as follows. First, to construct a list of commonly 
encountered flow processes and cross-classify them in terms of a few underlying characteristics 
relevant to measuring centrality.  Second, to match existing centrality measures to appropriate 
kinds of flow processes based on the flow characteristics they assume. Third, to test these ideas 
by running simulations of flow processes and comparing the results with selected measures of 
centrality. Fourth, to discuss the development of appropriate methods for flows that currently are 
not supported by any measures. Fifth, and finally, to discuss how considering flow processes 
entails a new way to think about centrality that casts centrality measures as expected values in an 
implicit model of nodal participation in network flows.  
 

2. Typology of Flow Processes 
 
In this section I consider a number of commonly encountered flow processes. It is not necessary 
to enumerate every possible kind of flow, but it is important to generate at least a handful of 
different kinds. These can then be compared and contrasted in order to elicit dimensions along 

                                                 
1 To be more precise, the canonical interpretations we give to these measures are valid to the extent that things flow 
in certain ways. 



which they differ. Finally, the dimensions are used to categorize these and other flows. I consider 
each of the following different kinds of traffic: used goods, money, gossip, e-mail, attitudes, 
infection, and packages.  
 
Used Goods. Consider the case of a used paperback novel that passes from person to person, 
particularly through the mails. The novel is a solid, indivisible object that can only be in one 
place at a time. As it goes from person A to person B to person C etc., it could easily return to a 
person earlier in the chain, simply because person G has no idea that person B had previously 
received it, and person B then graciously passes it on to someone else. However, except in 
special cases (e.g., Alzheimer’s), the book does not pass via the same link more than once. That 
is, if B has sent it to C, and later B receives the book again, he or she will not normally send it to 
C again.  
 
Hence, the paperback traverses the network using what graph theorist would call a trail – a 
sequence of incident links in which no link is repeated. Trails are distinguished from paths – 
sequences in which not only links but also nodes cannot be repeated – and walks, which are 
unrestricted sequences. All paths are trails, and all trails are walks, but not every walk is a trail 
and not every trail is a path. 
 
Money. Consider a specific dollar bill that moves through the economy, changing hands with 
each economic transaction. Like the gift, the dollar bill is indivisible and can only be in one place 
at a time. However, unlike the gift, the dollar bill is not proscribed from passing over the same 
link more than once. In fact, it could easily move from A to B, B back to A, A to B again, then B 
to C, and so on. From a graph theoretic point of view, the bill traverses the network via walks 
rather than trails. As a result, the movement of money can be modeled as a Markov process.  
 
Gossip. Imagine a juicy, very private, story moving through the informal network of employees 
of an organization. The story is confidential, which does not impede its flow, but means it is 
typically told behind closed doors to just one person at a time. Unlike gifts and dollar bills, the 
story can be in several places at once.2 It spreads by replication rather than transference. Like 
gifts but unlike dollar bills, it normally does not pass the same link twice (i.e., I don’t tell the 
same person the same story), but can pass the same node multiple times. Thus, it traces trails 
through the network rather than walks.  
 
E-mail. A typical example is an email message that warns of an electronic virus. The message is 
forwarded from one person to several of his contacts, often by sending one message to all of 
them simultaneously (unlike confidential gossip). The message exists in multiple places at the 
same time, thanks to diffusion by replication.  
 
Attitudes. Here the notion is of an influence process in which, through interaction, individuals 
effect changes in each others beliefs or attitudes. Thus, attitudes about what fashion items are 
“in” versus passé are spread from person to person. The attitudes spread through replication 
rather than transfer (I don’t lose my attitude the moment I infect you with it). A speaker may 
persuade many people at the same time, and the trajectories followed by the attitude can revisit 
links – I can continue to influence you about the same thing over time.  
                                                 
2 I leave aside the question of whether it is really the “same” object that is in multiple places at once. 



 
Infection. Consider the case of an infection to which the host becomes immune. The infection 
spreads from person to person by duplication, like gossip but doesn’t re-infect anyone who 
already has had it because they become immune.  
 
Packages. A package delivery process has the unique characteristic of having a fixed destination 
or target. In addition, a driver delivering a package normally knows and selects the shortest route 
possible, so that the package’s trajectory follows geodesic paths through a network of roads and 
intersections.  
 
Given these thumbnail sketches, it is not difficult to see a small set of attributes or dimensions 
along which these different flow processes vary. One attribute has to do with the mechanics of 
dyadic diffusion: specifically, whether diffusion occurs via replication (copy mechanism) or 
transfer (move mechanism). Another attribute, applicable only to replication-based flows, is 
whether the duplication is one at a time (serial), like the passing-on of a paperback novel, or 
simultaneous (parallel), like a radio broadcast.  A third attribute concerns whether the traffic 
flows non-deterministically, meaning that at any particular juncture traffic always takes the 
“best” way (such as taking the shortest possible road to a predetermined target), or whether 
traffic flows in a blind, undirected way. Finally, there is an attribute that describes whether 
trajectories follow graph-theoretic paths, trails or walks.  
 
The first two attributes both relate to the mechanism of node to node transmission. In addition, 
the second attribute is not independent of the first, since it is only defined for cases falling into 
one class of the first attribute. As a result, we can simplify the situation by combining the two 
attributes into a single categorical dimension with three classes: parallel duplication, serial 
duplication, and transfer.  
 
Similarly the remaining two attributes are both concerned with the kinds of trajectories that 
something flowing through the network can take. For convenience, they too can be collapsed into 
a single categorical dimension that describes the four kinds of trajectories that are realizable. 
These are geodesics, paths, trails, and walks.  
 
Taken together, these two dimensions can be used to construct a simple typology, as shown in 
Table 1. In the table, the rows correspond to the trajectory dimension, while the columns 
correspond to the transmission dimension. The cells of the table correspond to specific flow 
processes that have been cross-classified by these two dimensions.. 
 

Table 1 
Typology of Flow Processes 

 
 parallel duplication serial duplication Transfer 
geodesics <no process> mitotic reproduction package delivery 

paths internet name-server viral infection Mooch 
trails e-mail broadcast gossip used goods 
walks attitude influencing emotional support money exchange 

 
Of course, there are other dimensions we can also differentiate among flow processes. For 
example, some processes might always involve a 2-way effect in which A influences B at the 



same time that B influences A. However, to avoid unnecessary complication, I leave such 
attributes for exploration at another time. 
 

3. Relation to Centrality Measures 
 
The purpose of this section is to review a few well-known measures of centrality in order to see 
what kinds of flow assumptions they make. I begin with closeness centrality. 
 
As defined by Freeman (1979), a node’s closeness centrality is the sum of graph-theoretic 
distances from all other nodes, where the distance from a node to another is defined as the length 
(in links) of the shortest path from one to the other. In a flow context, we ordinarily interpret 
closeness as an index of the expected time until arrival of something flowing through the 
network (Borgatti, 1995). Nodes with low raw closeness scores have short distances from others, 
and so will tend receive flows sooner, assuming that what flows originates from all other nodes 
with equal probability, and also assuming that whatever is flowing manages to travel along 
shortest paths. In the case of information flows, we normally think of nodes with low closeness 
scores as being well-positioned to obtain novel information early, when it has the most value. 
Thus, organizations with low closeness in R&D technology-sharing network are able to develop 
products sooner than others. In contrast, individuals with low closeness scores in a sexual 
network are positioned to catch infections early, possibly before treatments are available in the 
case of new diseases.  
 
If traffic did not travel along shortest paths, we would not want to interpret closeness as an index 
of expected time until arrival. Thus, the canonical interpretation of closeness is accurate for two 
kinds of processes: those in which things flow along shortest paths, such as the package delivery 
process, and those in which things flow by parallel duplication. In the latter case, all possible 
paths are followed simultaneously, including the shortest path, and so the net effect is the same. 
It would be inappropriate to see closeness centrality as an index of reception speed for other flow 
processes. For example, we might be tempted to use closeness to indicate who is likely to receive 
news early in a gossip process. However, since gossip does not necessarily follow shortest paths, 
the rank ordering of who receives information earliest on average will not correspond to the 
ordering provided by the closeness centrality measure, as can easily be confirmed by simulation. 
(Tests of this kind are presented in the next section.) 
 
It should also be noted that the shortest path assumption includes a pair of assumptions about 
reachability. First, the measure only works on connected graphs, since the distance between 
unconnected nodes is undefined or, popularly, infinite. Second, taking shortest paths implies 
taking paths that in fact reach a particular destination – what we might call valid paths. If the 
requirement of taking shortest paths were removed so that traffic could follow any legal graph-
theoretic path, we would still need to assume selection of valid paths that actually led from origin 
to target. The reason for this assumption is that traffic flowing along graph theoretic paths can 
easily get stuck in a cul-de-sac from which it could not escape (since paths are defined as a 
sequence of adjacent nodes in which no node is visited more than once) and never actually reach 
the target. As a result, in interpreting a closeness measure in terms of time-until-arrival, we 



implicitly assume a flow process in which traffic from any origin “knows” how to reach any 
target, much like a non-deterministic computer algorithm. 
 
Another well-known centrality measure is betweenness (Freeman, 1979). Betweenness centrality 
is defined as the share of times that a node i needs a node k (whose centrality is being measured) 
in order to reach a node j via the shortest path. Specifically, if gij is the number of geodesic paths 
from i to j, and gikj is the number of these geodesics that pass through node k, then the 
betweenness centrality of node k is given by  
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Stated in plain language, betweenness is basically counts the number of geodesic paths that pass 
through a node k. At least, that is the numerator of the measure. The denominator exists to handle 
the case where there are multiple geodesics between i and j, and node k is only along some of 
them. Hence, betweenness is essentially k’s share of all paths between pairs that utilize node k – 
the exclusivity of k’s position. The idea, as Freeman describes it, is that a message traveling from 
node A to node D in Figure 1, when confronted with the possibility of  taking either route, 
essentially flips a coin and can be expected to choose the path through B 50% of the time. Thus, 
betweenness is conventionally thought to measure the volume of traffic moving from each node 
to every other node that would pass through a given node (Borgatti, 1995). Thus, it measures the 
amount of network flow that a given node ‘controls’ in the sense of being able to shut it down if 
necessary.  
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Figure 1. Traffic flowing from A to D is expected to pass through B 

or through C with equal probability. 
 
What are the assumptions built into this measure? Or, to put it another way, for what kinds of 
network flows would this measure make sense for? First, it is clear that the measure assumes that 
the traffic is indivisible. When confronted with several equally short paths, it chooses exactly one 
at random and proceeds. Thus the traffic seems to literally move or transfer from node to node, 
rather than being copied or broadcast from a node. Second, the traffic travels only along shortest 
paths. Rather than diffusing randomly, it has a target and knows the best way(s) to get there. In 
fact, by taking all pairs of nodes, the measure systematically takes into account traffic moving 
from all possible origins to all possible targets. 
 
What kind of flow has these properties? Surely not an infection nor information, which diffuse 
by copying rather than moving and which do not have targets and do not prefer to take the 
shortest paths to any node. Thus, it would seem completely inappropriate to use Freeman’s 



centrality measure as an index of the importance of a given node for the spread of infections or 
the movement of information. Nor does the spread of gossip seem to have these properties. Like 
infections, gossip is copied rather than moved, and does not normally have a target. Even if it has 
a target, it is unlikely to reach that target by the shortest possible path, since that would require 
each node to know what the best route was. Hence, Freeman’s centrality measure is probably not 
ideally suited for measuring a node’s ability to control flows of gossip. Rather, the assumptions 
built in to this measure match the characteristics of the package delivery process, which is 
characterized by indivisible traffic that transfers from node to node along shortest paths until it 
reaches a pre-determined target. 
 
Another popular measure of centrality is eigenvector centrality (Bonacich, 1972). Eigenvector 
centrality is defined as the principal eigenvector of the adjacency matrix defining the network. 
The defining equation of an eigenvector is  
 

Avv =λ  
 
where A is the adjacency matrix of the graph, lambda is a constant (the eigenvalue) and V is the 
eigenvector. The equation lends itself to the interpretation that a node that has a high eigenvector 
score is one that is adjacent to nodes that are themselves high scorers. Mathematically, 
eigenvector centrality is closely related to the measures proposed by Katz (1953), Hubbell 
(1965), Taylor (1969), Hoede (1978), Coleman (1966), and Friedkin (1991), almost all of which 
are known as influence measures. The idea is that even if a node influences just one other node, 
who subsequently influences many other nodes (who themselves influence still more others), 
then the first node in that chain is highly influential. At the same time, we can see eigenvector 
centrality as providing a model of nodal risk such that a node’s long-term equilibrium risk of 
receiving traffic is a function of the risk level of its contacts. Hence, a person A in a sexual 
network may have sex with just one person, but if that person is having sex with many others, the 
risk to A remains high.  
 
It can be shown (Bonacich, 1987; 1992) that an eigenvector is proportional to the row sums of a 
matrix S formed by summing all powers of the adjacency matrix, weighted by corresponding 
powers of the reciprocal of the eigenvalue, as shown in the next equation.  
 

...3221 +++= −− AAAS λλ  
 
It is also well known that the cells of the matrix powers give the number of walks of length k 
from node i to node j. Thus, the measure counts the number of walks of all lengths, weighted 
inversely by length, which emanate from a node.  
 
As a result, the measure “assumes” that traffic is able to move via unrestricted walks rather than 
being constrained by trails, paths or geodesics. In addition, the measure does not in any way 
assume that things flow by transferring or by replicating to one neighbor at a time. Rather, it is 
consistent with a mechanism in which each node affects all of its neighbors simultaneously, as in 
a parallel duplication process (first column of the typology). Hence, the eigenvector centrality 
measure is ideally suited for influence type processes.  
 



Finally, there is degree centrality (Freeman, 1979). Degree centrality can be defined as the 
number of ties incident upon a node. That is, it is the sum of each row in the adjacency matrix 
representing the network. To put the measure on the same footing as the other centrality 
measures discussed here, we can also define degree as the number of paths of length one that 
emanate from a node. As a result, one way to interpret the measure would be in terms of an 
implicit process that involves no indirect links. Examples of such processes might be situated 
knowledge construction in the sense of Lave and Wenger (1991) such that nodes i and j co-
construct something that is unique to them – if they engage in similar activity with others, the 
result would be different and unique to that pair. This describes a kind of flow process that falls 
outside of the typology presented earlier.  
 
However, another way to interpret the measure is as a measure of immediate effects only – of 
what happens at time t+1 only. For example, if a certain proportion of the nodes in the network 
are infected with something, and having a tie with an infected node implies getting infected, then 
the probability of immediate infection is a function of the number of nodes the node is adjacent 
to. In this sense, degree centrality is similar to eigenvector centrality, the difference being that 
eigenvector centrality measures a long-term direct and indirect risk while degree centrality 
measures immediate risk only. By analogy, we can therefore regard degree centrality as a 
measure of immediate influence – the ability to infect others directly or in one time period. Seen 
in terms of immediate effects, we can regard degree centrality as appropriate for all parallel 
duplication flow processes since in those cases the probability of receiving – in the next time 
period – something that is randomly distributed in the network, will be entirely a function of the 
number of ties that a give node has. 
 
Finally, degree models the frequency of visits by something taking an infinitely long random 
walk through a network (i.e., a money exchange process). As noted earlier, the money exchange 
process can be modeled as a Markov process. A well-known result in Markov theory is that for a 
random walk on a graph, the limiting probabilities for the nodes are proportional to degree.3  
Hence, the proportion of times that a node is visited is a function of its degree. This means that 
degree is an appropriate measure for walk-based transfer processes such as the money exchange 
process. 
 
Table 2 locates the four  best known measures of centrality and influence in the boxes of the 
typology for which they are appropriate. It is striking that most of the sociologically interesting 
processes are not covered by the major measures. The situation improves a little if we consider 
less well-known and/or forthcoming measures. For example, the influence and status measures of 
Katz (1953), Hubbell (1965), Taylor (1969) and Hoede (1978) all fall in the [walks, parallel] cell 
of the table, along with the closeness measure of Stephenson and Zelen (1989). Similarly, 
Friedkin’s (1991) measures of influence also fall in that cell. In contrast, the random walk 
betweenness and closeness measures of Newman (2004) and Noh and Rieger (2003), 
respectively, fall into the Markovian [walks,transfer] cell of the table.  Still, there are no 

                                                 
3 This can be shown as follows. Let di be the degree of node i, and let aij = 1 if i is adjacent to j and 0 otherwise. We 
define the transition probabilities as pij = aij/di and observed that dj = ∑iaij. If the limiting probabilities π are based on 
degree, than πi = di/∑di. We then need to show that πP = π. Writing πP as ∑iπipij we can then substitute di/∑di for πi 
to get ∑i[dipij]/∑di . Recognizing that dipij is aij, we get ∑iaij/∑di which is dj/∑di which is πj, the result we were 
looking for. 



measures appropriate for infection and gossip processes, which I would regard as extremely 
important. 
 

Table 2 
Flow Processes and Major Centrality Measures 

 
 parallel duplication serial duplication transfer 

geodesics  - Freeman closeness 
- Freeman closeness 
- Freeman betweenness 

Paths 
- Freeman closeness 
- Freeman degree     

Trails 
- Freeman closeness 
- Freeman degree     

Walks 

- Freeman closeness 
- Freeman degree 
- Bonacich eigenvector     

 

4. Simulations 
 
Although not presented formally as a theory, the ideas discussed above do constitute a theory of 
the structural importance of nodes as a function of flow characteristics. Furthermore, the theory 
is testable. For example, if I am correct in my assessment of the flow assumptions that underlie 
betweenness centrality, it should be that when we actually observe traffic moving through a 
network, the number of times that something passes through a given node should be 
approximated by the values calculated by the betweenness centrality formula, as long as the 
traffic moves according to the rules outlined for a package delivery process. For traffic moving 
in accordance with different rules, such as those of a gossip process, the number of times that 
traffic moves through a given node should not be well approximated by the formula. In effect, 
we should be able to see how well the formula does when we apply it to the wrong flow process. 
 
Thus, a critical concept in this section is that of expected versus realized centrality. Expected 
centrality is the centrality score calculated by the formula that defines it. Realized centrality is 
the observed value for a node in the context of a particular flow process. In other words, I 
essentially treat centrality measures as testable models of node importance. For example, in the 
case of betweenness, the underlying concept being modeled is the amount of traffic that flows 
through a node. Hence expected betweenness is a formula-based prediction, and realized 
betweenness is the actual frequency of traffic we observe flowing through a node across multiple 
instances. Similarly, the key concept in closeness centrality is the length of time it takes traffic to 
reach a node (or traffic from a node to reach others). Hence, expected closeness is a formula-
based estimate based on path-lengths, and realized closeness is what we obtain when we observe 
actual flows. 
 
In order to guarantee that the flows strictly follow the rules outlined by the theory, I use 
simulation to construct observable instances of flow. In general, the simulations proceed as 
follows. At time 0, I select a source node and assign it a string representing the traffic that will 
flow, whether by replication or transfer, through the network. At time 1 (and every subsequent 



time interval), the string flows from any node that has it to one or more (in the case of parallel 
duplication) of the node’s alters, either by copying or moving.   
 
A key question that arises is how to stop the simulation. For the package delivery process (and 
any other geodesic-based process), there is always a target node, and so the simulation stops 
when the target has been reached. Thus, a separate simulation is run for each possible 
combination source and target nodes.  In other words, the simulation study has the following 
algorithmic structure: 
 

For k = 1 to 1000 {independent trials} 
 For i = 1 to n {source nodes} 
  For j = 1 to n {target nodes} if i <> j then 
   Simulate flow from i to j 
 Compute node statistics for this trial 
Average the node statistics across trials & compare with centrality measures 

Figure 2. Source/Target method of running simulations 
 
For all other flow processes, it makes sense to let the simulation run until the string stops moving 
– i.e., it has reached every node it can reach. This approach would definitely be more in keeping 
with the notion of modeling real flows. In addition, it is practical in the sense that every path or 
trail-based process will definitely end somewhere. Only for walk-based measures do we need to 
create some kind of additional stopping rule (e.g., based on length of walk, or having reached all 
nodes at least once, etc.), since walks can be infinite. Thus, a separate simulation would be run 
for each possible source node. This yields the following structure: 
 

For k = 1 to 1000 {independent trials} 
 For i = 1 to n {nodes}  
     Simulate flow from i until done moving 
 Compute node statistics for this trial 
Average the node statistics & compare with centrality measures 

Figure 3. Source-only method of running simulations. 
 
However, for the purpose of maintaining comparability when validating against Freeman’s 
(1979) centrality measures, I use the source/target method for all flow processes, including ones 
that do not demand a target. To do otherwise would be to guarantee a lack of fit between the 
formula-based expected values and the results of the simulation experiments, and could be seen 
as an unfair comparison. However, it should be clear that in order to properly model what 
happens in most flow processes, a centrality measure should not assume a target node. This topic 
is taken up in more detail in the discussion section. 
 
I do the same with closeness centrality because flow processes without targets are not guaranteed 
to reach any particular node before becoming trapped. This then means that sometimes the time 
until arrival is infinite and cannot be averaged in with the rest. In effect, for most real flow 
processes, the graph traced out by actual flows need not be connected.  
 
Also, it should be noted that in some flow processes, it is not guaranteed that a given simulation 
from a particular source will actually reach the target. In those cases, the program simply tries 
again until the target is reached.  



 
Padgett and Ansell’s (1993) data on marriages among Renaissance families in Florence is used to 
illustrate the simulations. The network is shown in Figure 4. It should be noted that one family 
was removed because it was an isolate. For simplicity of exposition, only two measures of 
centrality are discussed: betweenness and closeness.  
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Figure 4. Padgett’s data on marriage ties among Renaissance Florentine families (isolate removed). 
 
 
4.1 Betweenness Centrality 
 
The first simulation to consider is of a package delivery process, whose characteristics are 
geodesic trajectories achieved by transferring from node to node – or “geodesic+transfer” for 
short. To simulate the package delivery process, I pick a starting node S, and a target node T, and 
map out all shortest paths from S to T. Then, at time 1, the package moves from S to an adjacent 
node, chosen randomly with uniform probability, that is along one of the shortest paths. If the 
package passes through any node F before reaching T, an observed betweenness counter for F is 
incremented. For each run of the simulation, all combinations of F, S and T are systematically 
tried. Finally, each run is repeated 1,000 times, and the betweenness tally averaged across runs. 
 
If the theory is correct, then the realized betweenness from the simulation should match exactly 
the expected betweenness calculated by Freeman’s formula. Table 3 (column “Package”) 
compares the results of 1,000 runs of the simulation against the expected value. It is clear that the 



formula hits the nail on the head, indicating that the flow characteristics of the package delivery 
process are appropriate for the measure. The question then becomes whether other flow 
processes are inconsistent with the measure, as predicted above. 
 
 

Table 3 
Freeman Betweenness and Frequency of Arrival Scores 

 
Actor Freeman Package Mooch Used  Gossip Infect Money 

MEDICI 47.5 47.5 113.7 129.8 334.3 887.03 1155.1 
GUADAGNI 23.2 22.8 74.9 73.8 252.2 513.35 827.9 

ALBIZZI 19.3 19.2 41.5 48.5 185.0 285.37 665.9 
SALVIATI 13.0 13.0 26.0 26.0 168.0 182.00 503.3 

RIDOLFI 10.3 10.7 61.3 64.2 189.0 227.89 665.4 
BISCHERI 9.5 9.5 60.9 58.6 189.0 257.23 664.7 
STROZZI 9.3 9.7 78.1 84.8 295.6 435.10 827.5 

BARBADORI 8.5 8.5 45.8 46.5 176.0 107.65 503.5 
TORNABUON 8.3 8.2 58.2 59.8 189.0 222.97 666.1 
CASTELLAN 5.0 5.0 64.5 64.7 188.7 277.20 665.3 

PERUZZI 2.0 2.0 59.1 55.1 189.0 232.30 664.7 
ACCIAIUOL 0.0 0.0 0.0 0.0 0.0 0.00 176.9 

GINORI 0.0 0.0 0.0 0.0 0.0 0.00 176.8 
LAMBERTES 0.0 0.0 0.0 0.0 0.0 0.00 176.6 

PAZZI 0.0 0.0 0.0 0.0 0.0 0.00 177.2 
 
The next simulation to consider is the mooch process (paths+transfer), in which indivisible traffic 
is restricted to traveling along paths but is not required to take shortest paths. As noted before, in 
order to maximize comparability with the betweenness measure, we choose to retain the concept 
of sources and targets, so that in each run each node serves once as source and as target for each 
source. For example, when node 1 is the source and node 2 is the target, we start the traffic at 
node 1 and let it flow until it reaches node 2. During that time, we record a betweenness point for 
each node passed along the way. If the flow dead-ends before getting to node 2, we simply clear 
the books for that flow and restart at node 1. This is then repeated for all possible pairs, 
cumulating betweenness points (for successful chains only) across all pairs. Again, the 
justification here is that when introducing new ways of looking at centrality, it is important to 
begin by matching the new ways as closely as possible with existing ways.  
 
The results show that realized betweenness in a mooch process are roughly similar to Freeman’s 
expected values, but significant differences can be found. For example, the Strozzi family, which 
is ranked 7th by Freeman’s measure, is found to receive far more traffic than expected. Indeed, it 
is ranked 2nd.  The reason is that the Strozzi’s lie along many paths between others, even if some 
are not particularly short.  
 
In the used goods process (trail+transfer), the traffic at any particular node randomly selects an 
adjacent neighbor from a list of available neighbors to move to. Neighbors are available if the 
undirected edge linking them to the current node has not been used before. The results closely 
match those of the mooch process. Interestingly, the numbers for Salviati are identical across all 
processes considered so far. As it happens, Salviati is located on a tendril within which the sets 



of geodesic paths, paths, and trails are identical, so we expect all transfer processes other than 
walk-based ones to have identical values for those nodes. 
 
It is interesting to note that the relative importance of the Strozzi family is greater than expected 
by the Freeman measure in all flow processes other than the one Freeman’s measure is designed 
for. In particular, Strozzi importance is particularly high in all of the trail-based flows (gift and 
gossip). The basic pattern seems to be that the more allowable trajectories there are, the greater 
the share of traffic passing through the Strozzi family. It is only when we restrict flows to 
traveling along shortest paths that Strozzi drops in importance. 
 
While we don’t normally interpret the absolute magnitude of centrality values, we can do it here 
because all of the measures measure the same thing on the same network. Thus, it is meaningful 
that the two serial replication processes, gossip and infection, have larger numbers in Table 3 
than the transfer processes (package, mooch and gift). This is because serial replication leads to 
considerably more traffic flowing through the network, since multiple copies of the same thing 
exist simultaneously.  
 
 
4.2. Closeness centrality 
 
A simulation of the package delivery process for closeness centrality is of little interest except to 
check the software implementation. By design, the traffic moves only along shortest paths, and 
therefore arrives in time proportion to the geodesic distance without variation. However, for 
completeness, the simulation was run and the result posted in Table 4. Since traversing one link 
takes one unit of time in the simulation space, the numbers in the table are identical to the 
Freeman closeness scores. 
 

Table 4 
Freeman Closeness and First Arrival Times 

 
Actor Freeman Package Mooch Used Gossip Infect Money 

MEDICI 25 25.0 46.7 50.1 78.9 63.7 575.2 
RIDOLFI 28 28.0 57.5 60.6 95.7 70.8 587.7 
ALBIZZI 29 29.0 55.7 53.3 100.7 68.6 562.3 

TORNABUON 29 29.0 56.4 58.1 98.2 70.0 584.8 
GUADAGNI 30 30.0 53.7 54.8 109.3 68.8 575.3 

BARBADORI 32 32.0 60.5 55.3 112.3 73.1 584.4 
STROZZI 32 32.0 59.9 61.3 104.0 73.3 602.9 

BISCHERI 35 35.0 61.1 63.9 111.6 74.1 599.0 
CASTELLAN 36 36.0 58.3 64.6 125.8 73.3 599.2 

SALVIATI 36 36.0 57.6 59.9 94.3 72.7 533.0 
ACCIAIUOL 38 38.0 59.5 64.3 98.2 69.8 536.3 

PERUZZI 38 38.0 61.3 67.9 111.3 75.4 603.7 
GINORI 42 42.0 68.9 65.3 124.5 75.9 523.2 

LAMBERTES 43 43.0 66.4 69.8 109.6 76.1 538.2 
PAZZI 49 49.0 70.7 72.9 155.9 78.8 497.8 

 



The mooch simulation is of greater interest. As shown in Table 4, the average times were 
considerably higher for this process than for package delivery. This is because the traffic is 
essentially wandering randomly over the graph until it reaches the target. However, the rank-
orders are quite similar.  
 
The gift process shows very similar results to the mooch process, although there are some 
differences in the rank orders. For example, Barbadori is fourth in gift process, compared to 10th 
in the mooch process. The average times are only slightly higher than for the mooch process, 
which is surprising since trails can be much longer than paths (trails are limited by the number of 
edges in a graph whereas paths are limited by the number of nodes).  
 
It should be noted that Table 4 gives times to arrive at the focal node rather than times it takes to 
reach other nodes from the focal node. In an undirected graph such as we have here, we normally 
expect closeness to be symmetrical since the distances from a node are the same as the distances 
to a node. However, for traffic that does not flow via shortest paths, distances can be non-
symmetric even in undirected graphs. For example, consider a pair of adjacent nodes, one with 
degree 10 and one with degree 1 (a pendant). Assume a process in which at time t, a node selects 
one alter at random and sends traffic to that node. When the process begins with the pendant, it 
unfailingly arrives at the degree 10 node in one unit of time. However, when the process begins 
with degree 10 node, it reaches the pendant in one unit of time only one in ten times – all other 
times it arrives later. For a transfer process, on average, it will arrive in 5 units of time. Table 5 
gives times from the focal node to all others.  
 

Table 5 
Freeman Closeseness and First Reach Times 

 
Actor Freeman Package Mooch Used Gossip Infect Money 

MEDICI 25 25.0 43.9 42.7 102.4 40.4 172.5 
RIDOLFI 28 28.0 54.9 54.5 108.8 58.6 287.0 
ALBIZZI 29 29.0 57.3 58.2 107.6 61.8 387.9 

TORNABUON 29 29.0 55.0 54.5 107.1 58.7 292.3 
GUADAGNI 30 30.0 54.8 53.5 105.0 52.8 285.0 

BARBADORI 32 32.0 63.0 60.1 112.6 69.4 446.0 
STROZZI 32 32.0 52.0 53.0 108.6 58.8 296.1 

BISCHERI 35 35.0 57.9 59.0 110.1 62.5 350.6 
CASTELLAN 36 36.0 57.3 57.9 110.8 73.4 390.8 

SALVIATI 36 36.0 57.7 67.2 103.7 85.8 777.4 
ACCIAIUOL 38 38.0 59.8 71.4 107.6 90.4 870.0 

PERUZZI 38 38.0 59.4 60.2 112.1 74.2 408.5 
GINORI 42 42.0 78.1 72.0 114.0 104.0 1084.5 

LAMBERTES 43 43.0 72.0 77.7 110.7 94.3 981.2 
PAZZI 49 49.0 70.9 80.1 109.3 99.2 1473.2 

 
Comparing with Table 4, one can see that the in and out figures are extremely close for all nodes 
except Ginori, which in most processes can reach others more easily than others can reach it. 
This is not a statistical fluke. For random walks, the average distance between two nodes 
depends on the ordering of opportunities for paths that are encountered. For example, consider 
the link between Ginori and Albizzi. In an infection process, an infection originating with Ginori 



reaches Albizzi in one unit of time every time. But an infection originating with Albizzi reaches 
Ginori on average in two units of time. This is because Albizzi has three possibilities, so Ginori 
could either be first, in which case the infection arrives in one unit of time, or second, in which 
case it arrives in two units, or third, in which case it arrives in three units. The average is two.  
 
Similarly, for an infection process running in the graph in Figure 4, nodes 1 through 5 take an 
average of 8 units of time to reach nodes 8 through 12, as shown in Table 6. In contrast, nodes 8 
through 12 take only 7.0 units to reach nodes 1 through 5. The reason is that when members of a 
populous clique begin a random walk, they are very likely to spend quite a bit of time wandering 
around their own clique. Few available paths at any juncture actually lead out of the clique. In 
contrast, the peripheral members of a start are funneled out of the star and quickly enter the 
clique, in which all paths lead to all nodes in relatively short order.  
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Figure 5. In the random walk of a Mooch process, nodes on the right will reach the nodes on the left more 

quickly than the other way around. 
 

Similarly, in Figure 5, nodes 1 through 5 take an average of 5.8 links to reach nodes 8 through 
12, as shown in Table 6. In contrast, nodes 8 through 12 take only 5.0 links to reach nodes 1 
through 5. Similarly, nodes 1 through 5 require an average 2.8 links to reach themselves, while 
nodes 8 through 12 require only 2.0 links. The reason is that when members of a populous clique 
begin a random walk, they are very likely to spend quite a bit of time wandering around their 
own clique. Few available paths at any juncture actually lead out of the clique. In contrast, the 
peripheral members of a star are funneled out of the star and quickly enter the clique, in which 
all paths lead to all nodes in relatively short order.  

 
Table 6 

Travel times between nodes in Figure 4 
 

 1-5 8-12
1-5 2.8 5.8
8-12 5.0 2.0

 
 

5. Discussion 
 



A common criticism of social network research is that insufficient attention is paid to network 
dynamics (e.g., Watts, 2003). In the case of assessing nodal prominence (i.e., centrality), the 
critics are right. As Friedkin (1991) has noted, the discussion of centrality has largely avoided 
any mention of the dynamic processes that unfold along the links of a network (not to mention 
the processes that shape the network structure). Yet the importance of a node in a network cannot 
be determined without reference to how traffic flows through the network. The simulation 
studies reported in this paper show that nodes that are highly central in trail-based processes such 
as gossip flow need not be highly central in, say, geodesic-based processes such as package 
delivery. The characteristics of the flow process affect which nodes will receive flows (quickly, 
frequently and certainly) and which are in a position to control flows. Just as researchers in 
experimental exchange theory have investigated how network position interacts with the rules of 
the game to generate opportunities for power use, I have sought to explore how node importance 
results from an interaction between position and the characteristics of the flow process. To this 
end, this paper offers an analysis of flow processes, noting key dimensions along which they 
differ from each other and constructing a simple typology of processes. 
 
In the past, centrality has been considered an abstract property of a node’s position in a network, 
measurable without regard for what the nodes and links mean and what processes they might 
support. No doubt many authors of centrality measures did not intend their measures to serve as 
theoretical predictive models. Yet the measures certainly embody theoretical thinking about 
network phenomena. In this paper, I propose an alternative conception that views centrality as a 
node-level outcome of implicit models of flow processes. More specifically, I regard the 
formulas for centrality concepts like betweenness and closeness as generating the expected 
values – under specific unstated flow models – of certain kinds of node participation in network 
flows. As such, they do not actually measure node participation at all but rather indicate the 
expected participation if things flow in the assumed way. One contribution of this paper is to 
make explicit what the assumptions behind each measure are, and then to test this deconstruction 
via simulation. For example, when we measure how often a node handles a package in a package 
delivery process, the results match to a few decimal places what the Freeman betweenness 
formula predicts. 
 
Thinking of existing centrality measures as models begs the important question of what exactly 
they are models of. To say that centrality measures measure “node importance” or “node 
participation” is not specific enough since there multiple measures that make the same flow 
assumptions (e.g., Freeman’s closeness and betweenness measures). For closeness and 
betweenness centrality, there are clear answers. In the context of network flow, the essence of 
closeness is time-until-arrival of something flowing through the network. The Freeman formula 
provides expected values of arrival times for package deliveries and other flow processes in 
traffic moves along shortest paths or take all paths simultaneously. In contrast, the essence of 
betweenness is frequency of arrival. The Freeman formula provides expected values for how 
often packages pass a station in a package delivery system.4 Thus, an objective of this paper has 
been to put forth the notion that the essence of measures like closeness and betweenness can be 
separated from the particulars of their formulas which embody the characteristics of the flow 
processes for which they were designed. A complete typology of centrality measures would 
                                                 
4 It is worth noting in passing that time until first arrival and frequency of arrival are concepts that are well studied 
in the context of Markov processes and provide a bridge to that literature. 



therefore include not only the dimensions pertaining to flow characteristics, as in Table 2, but 
also to the aspect of node participation captured (such as first arrival time and arrival frequency).  
 
As noted earlier, a striking thing about the set of centrality measures currently in existence is the 
absence of measures designed for the flow processes of greatest interest. The Freeman measures 
which dominate empirical network analysis are largely misapplied since the processes of interest 
are typically not based on geodesic paths. Thus, there is a real need for new measures that apply 
to more realistic flow processes. Of course, as this paper has shown, we can use simulation to 
obtain estimates of the expected values for any flow process. However, simulations are relatively 
costly and are not suitable for large graphs. Therefore, a crucial next step is the development of 
analytical solutions – i.e., formulas – for the expected values for arrival times and frequencies for 
a variety of different flow models, a task that Friedkin (1991) and Newman (2004) have already 
begun. 
 
Finally, it should be noted as a limitation of this study that I have only considered the case of 
flows that have a source and a target. This was done in order to ensure the comparability of 
existing centrality formulas with the results generated from flow simulations and establish the 
validity of my approach. However, the underlying logic of some of these flows (which are 
essentially random traversals of a network) suggests that we should also examine the case where 
flows originate at each node systematically, but have no particular target. This will pose some 
challenges for walk-based processes but is an important line of future research. 
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