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Two procedures are proposed for calculating standard errors for network statistics. Both are based on 
resampling of vertices: the first follows the bootstrap approach, the second the jackknife approach. In addition, 
we demonstrate how to use these estimated standard errors to compare statistics using an approximate t-test 
and how statistics can also be compared by another bootstrap approach that is not based on approximate 
normality. 

 
 
In social network analysis, we are used to calculating descriptive statistics for networks, but not so used 
to accompanying these statistics with standard errors. Yet the general arguments for the benefits of 
standard errors do apply to social network analysis: it is useful to have an indication of how precise a 
given description is, particularly when making comparisons between groups. The problem is that there 
are no established, widely applicable, ways of calculating standard errors for network statistics. Our 
objective in this paper is to develop some procedures for doing so. 

 
In the general (non-network) case, there are, roughly speaking, two approaches to calculating 
standard errors. The first is to take some descriptive statistic as the point of departure and find a way 
to calculate a standard error that requires a minimum of assumptions — the simplest example is the 
commonly calculated standard error of the mean of a simple random sample, which is based only on 
the assumption that the sample is simple random. The second approach is to formulate some statistical 
model for the observations, estimate the parameters of this model, and calculate the standard error of 
these parameter estimates. This paper presents an elaboration of the first of these two approaches for 
the case of network data. We assume that a researcher is interested in some descriptive statistic — the 
density of the network, an index for transitivity, network centralization, or any other network property — 
and wishes to have a standard error for this descriptive statistic without making implausibly strong 
assumptions about how the network came about. 
 
Two general-purpose non-parametric methods have been proposed in the statistical literature to 
construct standard errors for complicated or poorly understood statistics: the jackknife (Tukey, 1958) 
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and the bootstrap (Efron, 1979). Both methods are based on resampling, i.e., constructing many 
artificial data sets out of the observed data set, and using the variability between these artificial data 
sets. These methods have been theoretically elaborated and have led to a number of applications. A 
number of useful reviews exist in the literature, including ones by LePage and Billard (1992) and Shao 
and Tu (1995). A user-friendly DOS program for bootstrap and jackknife analysis, BOJA, is available 
(Boomsma, 1991).  
 
In the literature, these methods are developed for the usual random samples with rectangular data 
matrices but not for network data with their typical square data matrices and empty diagonal. This note 
proposes extensions of these methods to the network situation. It is assumed, at least initially, that a 
network data set Y with N nodes is available, there is interest in a statistic Z that is calculated from Y, 
and we would like to have a standard error for Z. All of our examples are based on network density, but 
it is important to remember that the procedures are very general, and could be used with virtually any 
network statistic, including centralization measures, number of cliques, fit to a core/periphery model, 
and so on. 
 
 
THE JACKKNIFE 
 
The basic idea of the jackknife is that, given a dataset of N sample elements,  N artificial datasets are 
created by deleting each sample element in turn from the observed dataset. The new datasets are 
quite similar, but the variability among them does give an indication of the variability that may be 
expected between independent replicates of the data set.2 The jackknife standard error for statistics Z 
defined for rectangular data matrices corresponding to simple random samples is defined by 

 
where Z-i is the statistic obtained for the data set from which case i is deleted, and Z-• is the average of 
Z-1, ..., Z-N . The fact that the sum of squares is multiplied by a factor close to 1, instead of being 
divided by N-1, reflects the fact that these N artificial data sets are much more similar than would be N 
independent replicates. 
 
The jackknife principle was studied by Frank and Snijders (1994) for network statistics. They found that 
the multiplication factor (N-1)/N is not adequate for network statistics. The reason is that this 
multiplication factor is based on the property, valid for most statistics based on simple random samples, 
that their variance is inversely proportional to the sample size (or approximately so). This is not so for 
network statistics. The number of relevant elements of an N×N adjacency matrix with no reflexive ties is 
N(N-1), and the variance of Z will more likely be inversely proportional to N(N-1) than to N. 
Accordingly, Frank and Snijders (1994) proposed for network statistics the jackknife variance 
estimated defined by 
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where Z-i is the network statistic obtained for the data set from which vertex i is deleted (so that a 
network on N-1 vertices remains), and Z-• is again the average of Z-1, ..., Z-N . For the statistics studied 
by Frank and Snijders (estimates for the number of vertices in an unknown graph, based on a snowball 
sample), the jackknife estimate of standard error performed quite well. 
 
 
THE BOOTSTRAP 
 
The basic idea of the bootstrap is that the observed data are treated as a population in itself, and that 
artificial samples of size N are drawn with replacement from the observed data. Thus, each artificial 
sample will contain multiple copies of some elements of the observed data, whereas other observed 
data points will be missing from the artificial sample. For network data, the obvious analogy is to draw a 
sample with replacement from the vertices.  
 
To specify this more explicitly, suppose that the data consist of a network on N vertices denoted i = 1, 
..., N, where the tie between vertices i and j is denoted Yij . (The network could be a graph, a directed 
graph, or a graph with valued edges.) A large number M of bootstrap samples is to be drawn. Each 
single bootstrap sample is drawn in the following way. A random sample with replacement is drawn from 
the vertices, and denoted i(1), ..., i(N). This means that all these i(k) are independent draws from the 
numbers 1, ..., N. The artificial network Y* is the network induced by these vertices i(1) to i(N). If 
vertices k and h in the artificial network correspond to different original vertices i(k) and i(h), this 
means simply that 

 
i.e., in the artificial network the tie between vertices k and h is the same as the tie between vertices i(k) 
and i(h) in the observed network.  
 
It is not obvious what to do for the ties between those artificial vertices that correspond to the same 
real vertex, at least in networks where reflexive ties are not defined. The idea of resampling vertices is 
that the procedure is meant to leave the basic network structure intact, and any scheme for filling in 
ties between artificial vertices corresponding to the same real vertex runs the risk of mixing up this 
structure. (One source of comfort is that, as the number of vertices grows larger, the expected fraction 
of such doubtfully determined ties will get closer to 0.) As an expedient solution, we propose a dyad-
based bootstrap for these ties. This means that the values for the dyads defined by artificial vertices 
corresponding to the same real vertex are chosen, with replacement, from the set of all N(N-1)/2 
dyads. The order of the two elements within the dyad is also determined randomly.  
 
The bootstrap standard error is then determined as follows. The described procedure of generating an 
artificial network is repeated M times independently, where M is large, e.g., 1,000. For each artificial 
network drawn in this way, the statistic of interest is calculated. Denote these artificial statistics by Z *(1) 
to Z *(M) . This means that Z *(m)  is calculated on the basis of the m'th artificially generated network Y*. 
The artificial networks are regarded as networks that might have been observed instead of the actually 
observed one, so that Z *(1) to Z *(M) is regarded as a synthetic sample from the distribution of Z. 
Accordingly, the bootstrap standard error is 
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where Z *( . ) is the mean of the Z *(m) .  
 
The main assumption of this bootstrap standard error is that it makes sense to regard the vertices as 
interchangeable, since the observed vertices are indeed treated interchangeably in the sampling 
process. Thus, for a network composed of a class of school children this might be more reasonable 
than for a network existing within a hierarchically structured organization (given that the hierarchy 
matters for the observed network). 
 
 
EVALUATING A NETWORK STATISTIC 
 
In this section we consider the problem of  comparing an observed network statistic Z with a theoretical 
value µ. For example, consider a social relation that serves as a conduit for the transmission of a 
virus.3 The greater the density of the network, the faster and more certainly the virus is spread. Based 
on theoretical considerations, we might postulate the existence of a threshold value of network density 
below which the infection cannot sustain itself, and above which there is danger of developing an 
epidemic.4 For any given network, the question is whether the density of ties falls within the safe range.  
 
A standard approach in this situation is to define a null hypothesis stating that the network density is 
less than the parameter µ, and reject the hypothesis if the observed statistic is sufficiently larger than 
the parameter, relative to the standard error of the sampling distribution. Hence, we calculate 

and reject the null if t is larger than 1.65, which is the critical value associated with a maximum Type 1 
error of 0.05 in a 1-tailed test.  
 
As an empirical example, consider the network of friendship ties among 67 prison inmates collected by 
Gagnon in the 1950s, reported by MacRae (1960), and available as part of the UCINET 5 software 
package (Borgatti, Everett and Freeman, 1999). Let us assume that the theoretical “tipping point” that 
separates epidemic from extinction occurs at density 3%. The observed density for this network is 
0.0412. The standard error, as estimated by the bootstrap method with 1,000 samples, is 0.0060 (it is 
0.0036 using the jackknife method). Converting to standard error units, we obtain (0.0412 - 
0.03)/0.0060 = 1.87. This value is larger than 1.65 and in fact corresponds to a 1-tailed significance 
level of 0.03. Therefore, we reject the null hypothesis and provisionally conclude that the population is 
in danger.  
 
It should be noted that in this approach we have assumed that the shape of the sampling distribution is 
approximately normal, and therefore use the bootstrap sampling distribution only to estimate the 
variance of this distribution. An alternative approach that does not make this assumption is to use the 
bootstrap sampling distribution directly to calculate the probability of obtaining an observed density as 
large as actually observed given the null hypothesis. Hence we would like to simply count the 

                     
     3 Equally, we can consider the transmission of a rumor or the adoption of an innovation. 

     4 For example, the R0 parameter described by Anderson (1982). 
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proportion of bootstrap samples that have a test statistic larger than the observed. However, the 
bootstrap distribution is centered on (or near) the observed statistic, Z, rather than the theoretical 
parameter.  This is because the bootstrap samples from the data rather than from the null distribution. 
Therefore, as Noreen (1989) suggests, we need to subtract the mean of the bootstrap sampling 
distribution (Z*(.)) from each value of Z*(m) and then add back the theoretical value. We then count the 
proportion of Z*(m) values that are larger than the observed Z. In effect, we assume the shape of the 
bootstrap distribution is correct, but simply mis-centered, and we use the center that corresponds to 
our null hypothesis. 
 
In our example, the mean bootstrap density was 0.0406. We therefore subtracted 0.0406 from each 
bootstrap  density, and added 0.03. We then counted the number of samples in which Z*(m)-
0.0406+0.03 was greater than  or equal to the observed value of 0.0412. Adding 1 to this count and 
dividing by M+1 gives an estimate of the proportion of samples (including the observed) which would 
equal or exceed the observed value – in short, the significance level. In this case, we obtained a 
significance of 0.038, which agrees well with our previous estimate. 
 

Table 1 
Comparison of Approaches for the One Sample Case 

 
 
 

 
Classical 
Estimate 

(s /√n) 

 
Bootstrap-
Assisted 

SE* 

 
Bootstrap 

Direct 
Method* 

 
SE 

 
0.0030 

 
0.0060 

 
NA 

 
T-
Statistic 

 
3.73 

 
1.87 

 
NA 

 
1-Tailed 
Significa
nce 

 
< 0.001 

 
0.031 

 
0.038 

 * Using 5,000 bootstrap samples 
 
Table 1 compares the significance levels obtained via the two bootstrap methods, and the 
(inappropriate) classical approach, which estimates the standard error of the sampling distribution from 
standard deviation of the sample variable. Note that the two bootstrap methods agree closely, while the 
classical method, whose assumptions are violated by network data, yields very different values. 
 
 
COMPARING TWO NETWORKS 
 
Another important application area is the comparison of a network statistics for two different groups. 
For example, Ziegler et al (1985) report the corporate interlocks among the major German business 
entities (15 in total). Stokman et al (1985) report interlocks among the major Dutch business entities 
(16 in total). The data are available as part of the UCINET 5 (Borgatti, Everett & Freeman, 1999) 
software package. The question we pose is this: is the level of interlock (i.e., the density of ties) 
different in the two countries? 
 
The observed density of the Dutch network was 0.5, while the density of the German network was 
0.6381, for an observed difference of 0.1381.To test the significance of this difference, we can 
construct a bootstrap or jackknife-based t-test. Assuming a null hypothesis of no difference, the 
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standard approach5 is to calculate 
 

 
where SE1 and SE2 are standard errors usually estimated from the standard deviation of the measured 
variable in each sample. In the network case, we substitute the jackknife or bootstrap-derived standard 
errors as outlined above.  Selecting the bootstrap as our method of choice, the standard errors for the 
Dutch and German networks are 0.0902 and 0.1083 respectively. The t-statistic works out to  
 

 0.9798 = 
0.140943

0.1381-
 = 

10830.+09020.

0.6381-0.5
 = t

22
 

 
which is clearly not significant. Thus, we cannot conclude that the Dutch and German economies have 
developed different levels of corporate interlock.  
 
 
PAIRED SAMPLES 
 
Next we consider the case of the same network observed at two points in time. For example, Jean 
Bartunek6 collected work relationships at two different times among faculty and staff at a school that 
included elementary, middle, and high school sub-units. The school had had a history of autonomous 
action within these levels and inadequate coordination among them. Time 1 was at the beginning of the 
school year, just before a new staff position was implemented with the explicit purpose of increasing 
coordination, and therefore work relationships, among the faculty staff. The data at Time 2 were 
collected at the end of the school year, 9 months after the position was created and a person hired to 
fill it. One of the questions posed by the school was whether the new person was successful in 
increasing coordination among the administration and faculty (in network terms, whether work ties were 
increased). In short, we would want to know whether the density at Time 2 is significantly greater than 
the density at Time 1. 
This situation is different from the last one in that the two samples here are not independent: instead, 
we have two sets of measurements of the same relation on the same set of players, and the 
relationship between a pair of players at Time 1 is unlikely to be independent of their relationship at 
Time 0. Therefore, to conduct a t-test, we must construct a different approach, analogous to the 
classical paired-sample t-test, for estimating the standard error of the difference.  

                     
     5 For independent samples and unknown population variances. 

     6 The data are described in Stevenson and Bartunek (1996). 

Using the bootstrap, we propose two approaches to the paired sample case, just as we did with the 
independent samples case. The first is as follows. Given the set of N actors in the observed 
network(s), a random sample of size N is drawn with replacement.  For this artificial set of actors, two 
separate networks, one for each time period, are then constructed using the procedures outlined 
earlier. The density of each is computed, and the difference between them recorded. This is repeated 
M times, and the S.E. of the difference (SEd) is computed as in Equation 4, where Z refers to the 

SE+SE 
Z-Z = t

2
2

2
1

21  
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difference in density. This is then used to calculate a t-statistic as shown in Equation 7. 

 
.e.s
Z-Z = t
B

21  (7) 

This approach is convenient but as noted before assumes that the shape of the sampling distribution is 
approximately normal. The second approach dispenses with this assumption by directly counting the 
proportion of bootstrap samples that yield a difference as extreme as actually observed. Once again, 
however, the bootstrap distribution is (asymptotically) centered on the observed difference rather than 
the theoretical expectation (usually, zero). Therefore, we subtract the mean of the bootstrap 
distribution from each bootstrap difference score, and then count the proportion of mean-centered 
bootstrap differences are as large as the difference actually observed. 
 
As an empirical example7, we use Kapferer’s (1972) tailor shop data. He recorded “sociational” 
(friendship, emotional) data on 39 members of a tailor shop in Zambia at two points in time. After the 
first set of observations there was a failed strike attempt. After the second set, there was a successful 
strike. A theory of collective movements might suggest that strikes cannot be successfully organized 
unless members of the group are well-enough connected to enable a single view to emerge (rather 
than a multiplicity of views held in disparate corners of the network). The hypothesis one would want to 
test then is that the density at Time 2 is higher than at Time 1. 
 
 Table 2. 
 Bootstrap-Assisted Paired Sample T-Test 
 

 
 

 
Time 
2 

 
Time 
1 

 
Differe
nce 

 
Density 

 
0.30

09 

 
0.21

32 

 
0.0877 

 
Bootstrap SE (5000 
samples) 

 
0.03

06 

 
0.02

71 

 
0.0245 

 
T-Statistic 

 
 

 
 

 
3.5773 

 
Significance 

 
 

 
 

 
< 0.001 

  
As shown in Table 2, the observed density at Time 2 is clearly higher than at Time 1, and the 
difference is significant when we run a paired sample t-test using the bootstrap-derived SE for the 
difference. The null hypothesis is rejected, and the research hypothesis is supported.8 
 
                     
     7 We abandon the Bartunek dataset because, on examining the data, we found that the density at Time 2 actually went 
down slightly, obviating the need for a one-tailed test that density increased. 

     8 Of course, the results support a number of theories, including the one that states that successful strikes have the 
effect of creating cohesion among the workers. 
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As an aside, it is interesting to note that, had we assumed independent samples, the t-statistic would 
have been 2.15, which is much smaller than the 3.58 we obtain with the paired samples formula, 
though still significant.  
 
 Table 3. 
 Direct Bootstrap Approach to Comparing 
 Difference in Densities for Two Measurements  
 On the Same Actors 
 

 
 

 
Differe
nce 
in 
Density 

 
Observed 

 
0.0877 

 
Avg. of bootstrap 
distribution 

 
0.0841 

 
Prop. of bootstrap 
samples 
with mean-adjusted 
difference 
as large as observed 

 
0.0004 

 
Table 3 gives the results of using the direct bootstrap approach. As shown in the table, the average 
density difference in the bootstrap sampling distribution was 0.0841. Subtracting this quantity from 
each bootstrap density and counting the proportion of samples with mean-centered differences greater 
than the observed difference of 0.0877, we obtain a significance value of 0.0004, which agrees well 
with the t-test computation. 
 
 
DISCUSSION 
 
We have proposed non-parametric standard errors, based on an extension of the bootstrap and 
jackknife principles to network data. In addition we have examined direct methods of evaluating specific 
hypotheses that are also based on the resampling principle, but which do not assume normality of the 
artificial sampling distribution. All of these techniques are computer-intensive but, in principle, easy to 
apply.  
 
Standard errors and statistical tests are inevitably based on considerations that the data — in our case, 
the network — "could have been different". These differences could occur because of observation 
errors, unreliability of measurement, the contingent — or probabilistic — nature of the processes that 
gave rise to the observed relations, sampling of vertices, choice of the observation moment (i.e., 
sampling in time), or whatever. Even in the study of entire networks, such considerations often are 
realistic. You cannot have a statistical test without the assumption that the data could have been 
different; the question is, which differences would have been likely? 
 
The main basis for both the bootstrap and jackknife approaches is the assumption that the vertices are 
interchangeable. Expressing this more intuitively, it is assumed that for different vertices i and j, the ith 
row and column of the adjacency matrix are "just as good" as the jth row and column, and that the 
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network in which the ith row and column was replaced by the jth "could also have been observed" — 
ignoring, for the moment, the (i, j) and ( j, i) elements. In still other words, the essential structure of the 
network would not be changed to an important extent by this replacement. If it is reasonable to take this 
viewpoint, then the bootstrap standard error and the bootstrap tests are reasonable also.  
 
For the jackknife standard error, there is an additional assumption: the variance of the statistic is 
assumed to be approximately inversely proportional to N(N-1), where N is the number of vertices. This 
assumption is not always well-founded, and it can be checked only if the distribution of the network is 
known, i.e., in theoretical cases. It seems more realistic to assume that, in general, the variance of 
network statistics is inversely proportional to something between N and  N(N-1). This makes the 
bootstrap standard error more reliable than the jackknife standard error, except in those cases where 
evidence for the reliability of the jackknife standard error has specifically been established. 
 
As such, the proposed methods bear some relation to the permutation technique for testing relations 
between networks, also known as QAP ("Quadratic Assignment Procedure") correlation, proposed by 
Hubert and Baker (1978) and elaborated and popularized, e.g., by Krackhardt (1988). In contrast to 
the bootstrap and jackknife procedures, this permutation technique requires that two (or more) 
networks with the same vertex set are available, and a null hypothesis about their statistical 
independence (possibly partialling out other variables) is being tested. This null hypothesis is 
understood as follows: the identity of the N vertices is immaterial for the relation between the two 
networks, implying that a data set with permuted vertices could just as well have been observed. 
Similar to the bootstrap and jackknife procedures, the permutation technique is based on artificial data 
sets: in the simplest case where conformity of two adjacency matrices is tested, one matrix is left as it is 
while in the other the rows and columns are permuted correspondingly. The QAP technique provides 
the distribution and standard errors under the null hypothesis of independence. Thus, it is non-
parametric because it does not make assumptions about the probability distribution of the networks 
considered separately, but it is restricted to the null hypothesis that the two networks are statistically 
independent. 
 
It should be noted that there exist some simple (and usually unrealistic) null models under which the 
standard errors of certain statistics have been calculated. For distributions that imply exchangeable 
vertices (in other words, permutation invariance), it makes sense to compare the standard errors 
derived under such a distribution to the bootstrap and jackknife standard errors. Examples are the U¦L 
distribution, where the graph or digraph is random under the condition of a fixed number of arcs; and 
the U¦M,A,N distribution, where the dyad count of a digraph is supposed to be given but for the rest 
the digraph is random (see Wasserman and Faust, 1994, Chapter 13). For some network statistics, 
standard errors under such distributions have been calculated. E.g., Holland and Leinhardt (1975) give 
the standard sampling variance of arbitrary linear combinations of the triad census under the U¦M,A,N 
distribution and Snijders (1981) gives the sampling variance of the degree variance under the U¦L 
distribution. For the majority of graphs generated under such a distribution with exchangeable vertices, 
it may be expected that the bootstrap and jackknife standard errors are of the same order of 
magnitude as the standard errors calculated by such formulae, because all three are appropriate in 
such cases. However, for graphs that have a low probability under these simple distributions — in other 
words: for which such a simple distribution does not give a good fit — the formulae are untrustworthy 
and the bootstrap standard error is more reliable, since it requires only the exchangeability of the 
vertices and not the large degree of randomness that is inherent to these simple distributions. It may 
be expected, because of this large degree of randomness assumed by the simple distributions, that the 
bootstrap standard errors will tend to be larger than the standard errors derived for the simple 
distributions. 
 
Let us end by mentioning that the basis for these non-parametric standard errors and probabilities is 



 
 10 

mainly intuitive, and that it would be interesting to see research devoted to their reliability. In the 
meantime, we suggest that it is reasonable to use the techniques we propose, since (a) there seem to 
be no alternatives in the general case, and (b) it is better to have a rough impression of the uncertainty 
or variability associated with observed network statistics than none at all. Therefore we hope that 
especially the bootstrap standard error will be applied widely by network analysts.9 
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