Representation and Data (mathematical models)

Steve Borgatti

Three Representations

- Network/relational data typically represented in one of three ways
 - Graphs
 - Graphs vs digraphs
 - Matrices
 - Relations on sets

(proper) Graphs

- A graph G(V,E) consists of ...
 - Set of nodes | vertices V representing actors
 - Set of lines | edges E representing ties
 - An edge is an unordered pair of nodes (u,v)
 - Nodes u and v adjacent if (u,v) ∈ E
 - So E is subset of set of all pairs of nodes
- Drawn without arrow heads
 - Sometimes with dual arrow heads
- Represent logically symmetric social relations
 - In communication with; attending same meeting as

Digraphs

- Digraph G(V,E) consists of ...
 - Set of nodes V
 - Set of directed arcs E
 - An arc is an ordered pair of nodes (u,v)
 - (u,v) ∈ E indicates u sends arc to v
 - (u,v) ∈ E does <u>not</u> imply that
 (v,u) ∈ E

- Ties drawn with arrow heads, which can be in both directions
- Represent logically non-symmetric or anti-symmetric social relations
 - Lends money to

Valued Digraphs (vigraphs)

- A valued digraph G(V,E,W) consists of ...
 - Set of nodes V
 - Set of directed arcs E
 - An arc is an ordered pair of nodes (u,v)
 - (u,v) ∈ E indicates u sends arc to v
 - (u,v) ∈ E does <u>not</u> imply that (v,u) ∈ E
 - Mapping W of arcs to real values
- Values can represent such things as
 - Strength of relationship
 - Information capacity of tie
 - Rates of flow or traffic across tie
 - Distances between nodes
 - Probabilities of passing on information
 - Frequency of interaction

Dyadic Relationships among Nodes

Potential

Actual

Adjacency Matrices

Friendship

	Jim	Jill	Jen	Joe
Jim	1	~	0	1
Jill	1	ı	1	0
Jen	0	1	ı	1
Joe	1	0	1	-

Proximity

	Jim	Jill	Jen	Joe
Jim	•	3	9	2
Jill	3	-	1	15
Jen	9	1	-	3
Joe	2	15	3	-

Matrices

- Matrix A
- Cell a_{ij}
 - First subscript is row, second is column

Age Gender Income			
Mary	32	1	90,000
Bill	50	2	45,000
John	12	2	0
Larry	20	2	8,000

$$a_{12} = 1$$

 $a_{43} = 8K$

Α

Ways and Modes

- Ways are the dimensions of a matrix.
- Modes are the sets of entities indexed by the ways of a matrix

	Event	Event	Event	Event
	1	2	3	4
EVELYN	1	1	1	1
LAURA	1	1	1	0
THERESA	0	1	1	1
BRENDA	1	0	1	1
CHARLO	0	0	1	1
FRANCES	0	0	1	0
ELEANOR	0	0	0	0
PEARL	0	0	0	0
RUTH	0	0	0	0
VERNE	0	0	0	0
MYRNA	0	0	0	0

2-way, 2-mode

	Mary	Bill	John	Larry
Mary	0	1	0	1
Bill	1	0	0	1
John	0	1	0	0
Larry	1	0	1	0

2-way, 1-mode

Mainstream Logical Data Structure

- 2-mode rectangular matrices
 - Rows (cases) are entities, e.g., persons
 - Columns (variables) are attributes of the cases

Cases (entities)

- Analysis consists of correlating columns
 - Typically identify one column as the thing to be explained
 - We explain one attribute as a function of the others

Variables (attributes)

	Age	Sex	Education	Income
1001				
1002				
1003				
1004				
1005				

Network Logical Data Structures

Adjacency matrices

Incidence matrix

Friendship					
	Jim	Jill	Jen	Joe	
Jim	ı	1	0	1	
Jill	1	ı	1	0	
Jen	0	1	ı	1	
Joe	1	0	1	-	

	Friendship Proximity			
Jim - Jill	1	3		
Jim - Jen	0	9		
Jim - Joe	1	2		
Jill - Jen	1	1		
Jill - Joe	0	15		
Jen - Joe	1	3		

Proximity

	Jim	Jill	Jen	Joe
Jim	•	3	9	2
Jill	3	-	1	15
Jen	9	1	ı	3
Joe	2	15	3	-

- Multiple relations for same set of actors
- Each relation is a (dyadic) variable
 - But can also be aggregated to node/group level
- Cases are pairs of actors
- Some hypotheses can be phrased in terms of correlations between relations