Brokerage

Steve Borgatti

Structural Holes

- Basic idea: Lack of ties among alters may benefit ego
- Benefits
 - Autonomy
 - Control
 - Information

Control Benefits of Structural Holes

White House Diary Data, Carter Presidency

Data courtesy of Michael Link

Year 4

Information & Success

Cross, Parker, & Borgatti, 2002. Making Invisible Work Visible. California Management Review. 44(2) 22005 Steve Borgatti

Changes Made

- Cross-staffed new internal projects

 white papers, database development
- Established cross-selling sales goals

 managers accountable for selling projects
 - with both kinds of expertise
- New communication vehicles

 project tracking db; weekly email update
- Personnel changes

9 Months Later

Cross, Parker, & Borgatti, 2002. Making Invisible Work Visible. California Management Review. 44(2): 25-46

Burt's Measures of Structural Holes

- Effective Size
- Constraint

Effective Size

 $m_{jq} = j$'s interaction with q divided by j's strongest relationship with anyone $p_{iq} =$ proportion of i's energy invested in relationship with q

$$ES_{i} = \sum_{j} \left[1 - \sum_{q} p_{iq} m_{jq} \right], \quad q \neq i, j$$
$$ES_{i} = \sum_{j} 1 - \sum_{j} \sum_{q} p_{iq} m_{jq}, \quad q \neq i, j$$

Effective size is network size (N) minus redundancy in network

Effective Size in 1/0 Data

- M_{jq} = i's interaction with q divided by j's strongest tie with anyone
 So this is always 1 if j has tie to q and 0 otherwise
- P_{iq} = proportion of i's energy invested in relationship with q
 So this is a constant 1/N where N is ego's network size

$$\begin{split} ES_{i} &= \sum_{j} \left[1 - \sum_{q} p_{iq} m_{jq} \right], \quad q \neq i, j \\ ES_{i} &= \sum_{j} \left[1 - \frac{1}{n} \sum_{q} m_{jq} \right], \quad q \neq i, j \\ ES_{i} &= \sum_{j} 1 - \sum_{j} \frac{1}{n} \sum_{q} m_{jq}, \quad q \neq i, j \\ ES_{i} &= n - \frac{1}{n} \sum_{j} \sum_{q} m_{jq}, \quad q \neq i, j \\ \end{split}$$

Constraint

 M_{jq} = i's interaction with q divided by j's strongest relationship with anyone So this is always 1 if j has tie to q and 0 otherwise

P_{iq} = proportion of i's energy invested in relationship with q So this is a constant 1/N where N is network size

$$c_{ij} = p_{ij} - \sum_{q} p_{iq} m_{qj}, \quad q \neq i, j$$

- Alter j constrains i to the extent that
 - i has invested in j
 - i has invested in people (q) who have invested heavily in j. That is, i's investment in q leads back to j.
- Even if i withdraws from j, everyone else in i's network is still invested in j

- On left, node 2 is more constrained than 1 and 5
- On right, node 2 is less constrained than 1 and 5

Approaches to Social Capital

- Topological (shape-based)
 - Burt
 - Coleman
- Connectionist (attribute-based)
 Lin

Brokerage Roles

- Gould & Fernandez
- Broker is middle node of directed triad
- What if nodes belong to different organizations?

kind of brokerage role

Counting of Role Structures

	Coordinator	Gatekeeper	Representative	Consultant	Liaison	Total
HOLLY	0	6	6	2	0	14
BRAZEY	0	0	0	0	0	0
CAROL	2	0	0	0	0	2
PAM	6	4	4	0	0	14
PAT	4	3	3	0	0	10
JENNIE	4	0	0	0	0	4
PAULINE	6	4	4	0	0	14
ANN	2	0	0	0	0	2
MICHAEL	2	4	4	0	0	10
BILL	0	0	0	0	0	0
LEE	0	0	0	0	0	0
DON	2	0	0	0	0	2
JOHN	0	2	2	0	0	4
HARRY	2	0	0	0	0	2
GERY	2	3	3	0	0	8
STEVE	10	0	0	0	0	10
BERT	4	0	0	0	0	4
RUSS	6	0	0	0	0	6

Another Example

	Coord	Gate	Rep	Cons	Liais	Total
JB	3	17	1	0	3	24
ΤB	0	5	0	4	5	14
MC	1	0	0	0	0	1
CC	0	0	0	0	5	5
BD	1	0	40	0	0	41
TD	5	5	45	8	25	88
PD	0	0	0	0	0	0
JF	0	0	0	0	0	0
KG	7	22	9	0	15	53
SM	0	1	0	0	0	1
BS	1	0	0	0	0	1
AS	0	0	0	0	0	0
JT	0	0	0	0	0	0
PW	0	30	0	0	0	30
CW	0	6	0	3	5	14
ΤW	0	0	0	0	0	0
Total	18	86	95	15	58	272

Role Profiles

Observed

^{© 2005} Steve Borgatti

E-I Index

• Krackhardt and Stern

$$\frac{E-I}{E+I}$$

- E is number of ties between groups, I is number of ties within groups
- Varies between -1 (homophily) and +1 (heterophily)

E-I Index

	Internal	External	Total	E-I
HOLLY	3	2	5	-0.20
BRAZEY	3	0	3	-1.00
CAROL	3	0	3	-1.00
PAM	4	1	5	-0.60
PAT	3	1	4	-0.50
JENNIE	3	0	3	-1.00
PAULINE	4	1	5	-0.60
ANN	3	0	3	-1.00
MICHAEL	4	1	5	-0.60
BILL	3	0	3	-1.00
LEE	3	0	3	-1.00
DON	4	0	4	-1.00
JOHN	2	1	3	-0.33
HARRY	4	0	4	-1.00
GERY	3	1	4	-0.50
STEVE	5	0	5	-1.00
BERT	4	0	4	-1.00
RUSS	4	0	4	-1.00

Density Tables

• Number of ties from one group to another, as a proportion of the number possible

	Division							
	1	2	3	4	5	6	7	8
Division 1		5%	11%	2%	6%	7%	1%	10%
Division 2	5%		18%	11%	7%	2%	3%	2%
Division 3	11%	18%		21%	12%	13%	16%	9%
Division 4	2%	11%	21%		6%	7%	6%	6%
Division 5	6%	7%	12%	6%		2%	8%	3%
Division 6	7%	2%	13%	7%	2%		2%	10%
Division 7	1%	3%	16%	6%	8%	2%		0%
Division 8	10%	2%	9%	6%	3%	10%	0%	
Avg.	6.0%	6.8%	14.3%	8.4%	6.3%	6.1%	5.1%	5.7%
	I	1	1			1		<u> </u>