Brokerage

Steve Borgatti

Structural Holes

- Basic idea: Lack of ties among alters may benefit ego
- Benefits
- Autonomy
- Control
- Information

Autonomy

Control Benefits of Structural Holes

White House Diary Data, Carter Presidency

Year 1

Data courtesy of Michael Link
Year 4

Information \& Success

Changes Made

- Cross-staffed new internal projects
- white papers, database development
- Established cross-selling sales goals
- managers accountable for selling projects with both kinds of expertise
- New communication vehicles
- project tracking db; weekly email update
- Personnel changes

9 Months Later

Cross, Parker, \& Borgatti, 2002. Making Invisible Work Visible. California Management Review. 44(2): 25-46

Burt's Measures of Structural Holes

- Effective Size
- Constraint

Effective Size

$m_{j q}=j$'s interaction with q divided by j 's strongest relationship with anyone $p_{i q}=$ proportion of i's energy invested in relationship with q

$$
\begin{array}{ll}
E S_{i}=\sum_{j}\left[1-\sum_{q} p_{i q} m_{j q}\right], & q \neq i, j \\
E S_{i}=\sum_{j} 1-\sum_{j} \sum_{q} p_{i q} m_{j q}, & q \neq i, j
\end{array}
$$

- Effective size is network size (N) minus redundancy in network

Effective Size in 1/0 Data

- $\mathrm{M}_{\mathrm{jq}}=\mathrm{i}$'s interaction with q divided by j 's strongest tie with anyone
- So this is always 1 if j has tie to q and 0 otherwise
- $P_{i q}=$ proportion of i's energy invested in relationship with q
- So this is a constant $1 / \mathrm{N}$ where N is ego's network size

$$
\begin{aligned}
& E S_{i}=\sum_{j}\left[1-\sum_{q} p_{i q} m_{j q}\right], \quad q \neq i, j \\
& E S_{i}=\sum_{j}\left[1-\frac{1}{n} \sum_{q} m_{j q}\right], \quad q \neq i, j \\
& E S_{i}=\sum_{j} 1-\sum_{j} \frac{1}{n} \sum_{q} m_{j q}, \quad q \neq i, j \\
& E S_{i}=n-\frac{1}{n} \sum_{j} \sum_{q} m_{j q}, q \neq i, j
\end{aligned}
$$

Constraint

$\mathrm{M}_{\mathrm{jq}}=\mathrm{i}$'s interaction with q divided by j 's strongest relationship with anyone So this is always 1 if j has tie to q and 0 otherwise
$P_{i q}=$ proportion of i's energy invested in relationship with q So this is a constant $1 / \mathrm{N}$ where N is network size

$$
c_{i j}=p_{i j}-\sum_{q} p_{i q} m_{q j}, \quad q \neq i, j
$$

- Alter j constrains i to the extent that
- i has invested in j
- i has invested in people (q) who have invested heavily in j. That is, i's investment in q leads back to j.
- Even if i withdraws from j , everyone else in i's network is still invested in j

Constraint

- On left, node 2 is more constrained than 1 and 5
- On right, node 2 is less constrained than 1 and 5

Approaches to Social Capital

- Topological (shape-based)
- Burt
- Coleman
- Connectionist (attribute-based)
- Lin

Brokerage Roles

- Gould \& Fernandez
- Broker is middle node of directed triad
- What if nodes belong to different organizations?

Coordinator

Brokerage Roles

Liaison

- We can count how often a node enacts each kind of brokerage role

Counting of Role Structures

	Coordinator	Gatekeeper	Representative	Consultant	Liaison	Total
HOLLY	0	6	6	2	0	14
BRAZEY	0	0	0	0	0	0
CAROL	2	0	0	0	0	2
PAM	6	4	4	0	0	14
PAT	4	3	3	0	0	10
JENNIE	4	0	0	0	0	4
PAULINE	6	4	4	0	0	14
ANN	2	0	0	0	0	2
MICHAEL	2	4	4	0	0	10
BILL	0	0	0	0	0	0
LEE	0	0	0	0	0	0
DON	2	2	0	0	0	2
JOHN	0	0	0	0	0	4
HARRY	2	3	0	0	0	2
GERY	2	0	0	0	0	10
STEVE	10	0	0	0	0	4
BERT	4	0	0	0	6	
RUSS	6	0	0	0		

Another Example

	Coord	Gate	Rep	Cons	Liais	Total
JB	3	17	1	0	3	24
TB	0	5	0	4	5	14
MC	1	0	0	0	0	1
CC	0	0	0	0	5	5
BD	1	0	40	0	0	41
TD	5	5	45	8	25	88
PD	0	0	0	0	0	0
JF	0	0	0	0	0	0
KG	7	22	9	0	15	53
SM	0	1	0	0	0	1
BS	1	0	0	0	0	1
AS	0	0	0	0	0	0
JT	0	0	0	0	0	0
PW	0	30	0	0	0	30
CW	0	6	0	3	5	14
TW	0	0	0	0	0	0
Total	18	86	95	15	58	272

Role Profiles

Observed

E-I Index

- Krackhardt and Stern

$$
\frac{E-I}{E+I}
$$

- E is number of ties between groups, I is number of ties within groups
- Varies between -1 (homophily) and +1 (heterophily)

E-I Index

	Internal	External	Total	E-I
HOLLY	3	2	5	-0.20
BRAZEY	3	0	3	-1.00
CAROL	3	0	3	-1.00
PAM	4	1	5	-0.60
PAT	3	1	4	-0.50
JENNIE	3	0	3	-1.00
PAULINE	4	1	5	-0.60
ANN	3	0	3	-1.00
MICHAEL	4	1	5	-0.60
BILL	3	0	3	-1.00
LEE	3	0	3	-1.00
DON	4	0	4	-1.00
JOHN	2	1	3	-0.33
HARRY	4	0	4	-1.00
GERY	3	1	4	-0.50
STEVE	5	0	5	-1.00
BERT	4	0	4	-1.00
RUSS	4	0	4	-1.00

Density Tables

- Number of ties from one group to another, as a proportion of the number possible

	Division 1	Division 2	Division 3	$\begin{gathered} \text { Division } \\ 4 \end{gathered}$	Division 5	$\begin{gathered} \text { Division } \\ 6 \end{gathered}$	Division 7	$\begin{gathered} \text { Division } \\ 8 \end{gathered}$
Division 1		5\%	11\%	2\%	6\%	7\%	1\%	10\%
Division 2	5\%		18\%	11\%	7\%	2\%	3\%	2\%
Division 3	11\%	18\%		21\%	12\%	13\%	16\%	9\%
Division 4	2\%	11\%	21\%		6\%	7\%	6\%	6\%
Division 5	6\%	7\%	12\%	6\%		2\%	8\%	3\%
Division 6	7\%	2\%	13\%	7\%	2\%		2\%	10\%
Division 7	1\%	3\%	16\%	6\%	8\%	2\%		0\%
Division 8	10\%	2\%	9\%	6\%	3\%	10\%	0\%	
Avg.	6.0\%	6.8\%	14.3\%	8.4\%	6.3\%	6.1\%	5.1\%	5.7\%

