
Emergent Groups: Detecting an Emergent Subgroup

-Clumpiness -Regions -Subgroups

Revised 15 July, 2004. Colchester, U.K.

Transitivity

- Proportion of triples with 3 ties as a proportion of triples with 2 or more ties
 - Aka the clustering coefficient

{C,T,E} is a transitive triple, but {B,C,D} is not. {A,D,T} is not counted at all.

Network Regions

Network Regions

- Large "contiguous" areas
- Areas that contain cohesive subgroups
- We will cover:
 - Components
 - K-Cores

Graph Terminology

- A graph G(V,E) consists of a set of nodes V and a set of lines E. Each line e ∈ E consists of a pair of nodes (u,v)
- A graph G' is a subgraph of a graph G if every line in E(G') is in E(G), and every node in V(G') is in V(G).
- The subgraph S induced by a set of nodes consists of those nodes together with <u>all</u> ties among them

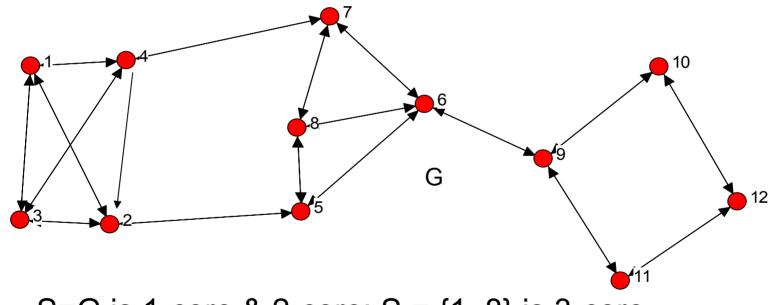
Components

- A subgraph S of a graph G is a component if S is maximal and connected
 - Connected means that every node can reach every other by some path (no matter how long)

Components in Digraphs

- If G is a digraph, then
 - S is a weak component if it is a component of the underlying (undirected) graph
 - i.e., we allow semi-paths rather than require true directed paths
 - S is a strong component if for all u,v in S, there is a path from u to v

Notes on Components


- Isolates are (very small) components
- Finding components is often first step in analysis of large graphs
 - Often analyze each component separately, or discard very small components
 - Many network measures require a connected graph, so they don't work on graphs with multiple components

Alpha Operator

- Let α(S1,S2) be the number of ties from members of set S1 to members of the set S2
- α(u,S) is number of ties node u has with members of set S
- α(S) = α(S,V-S) is number of ties from members of set S to members of V-S (i.e., all other nodes)

K-Core

A subgraph S is a k-core if for all u ∈ S, α(u,S)
 >= k, and S is maximal

– S=G is 1-core & 2-core; S = {1..8} is 3-core

- There is no 4-core or higher

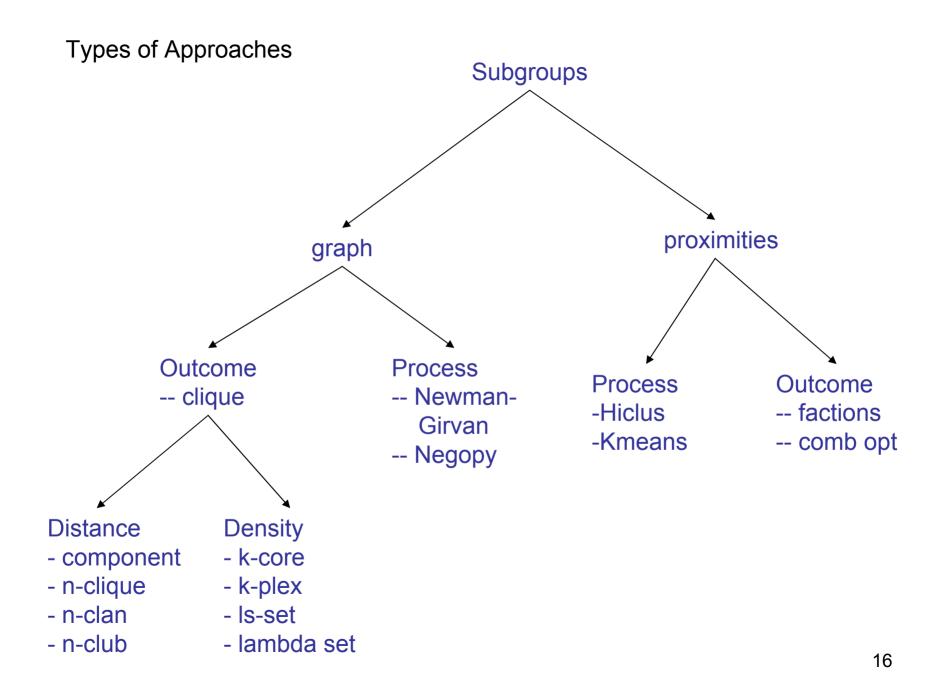
K-Core Notes

- Finds areas within which cohesive subgroups may be found
- Identifies fault lines across which cohesive subgroups do not span
- In large datasets, you can successively examine the 1-cores, the 2-cores, etc.

– Progressively narrowing to core of network

Cohesive Subgroups

Cohesive Subgroups


- Initially conceived of as formalizations of fundamental sociological concepts
 - Primary groups
 - Emergent groups
- Now typically thought of in terms of a technique for identifying groups within networks


Canonical Hypothesis

- Members of group will have similar outcomes
 - Ideas, attitudes, illnesses, behaviors
- Due to interpersonal transmission
 - transference
 - Influence / persuasion
 - Co-construction of beliefs & practices
 - As in communities of practice
- So group membership is independent var used to predict commonality of attitudes, beliefs, etc.

Typology of Subgroups

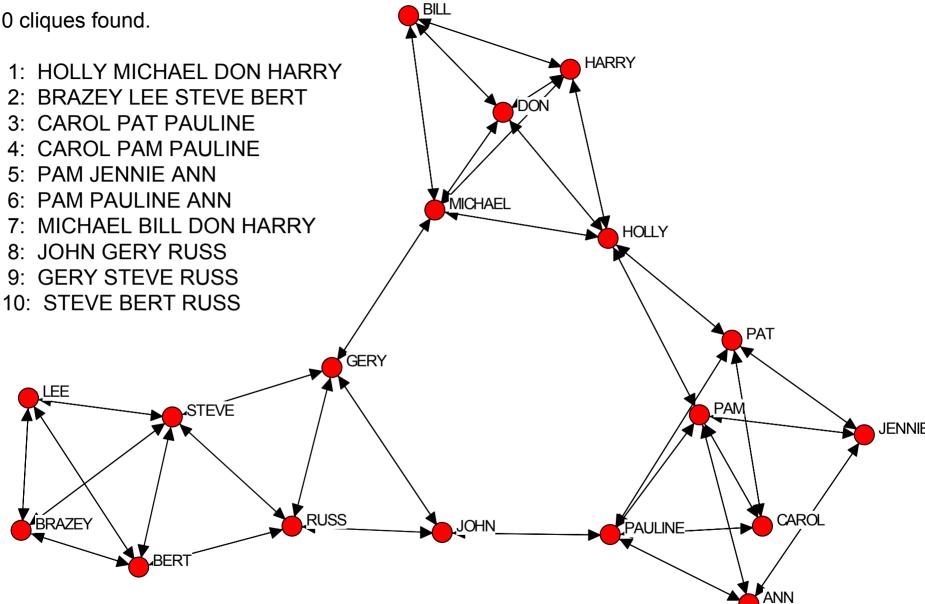
	Process	Outcome
Network / Graph theory	Newman-Girvan	Clique, n-clique, n- clan, n-club, k-plex, ls- set, lambda-set, k- core, component
Proximities / Clustering	Johnson's Hierarchical clustering; k-means; MDS	Factions, combinatorial optimization

Cliques

- Definition
 - Maximal, complete subgraph
 - Set S s.t. for all u,v in S, (u,v) in E
- Properties
 - Maximum density (1.0)
 - Minimum distances (all 1)

a

- overlapping
- Strict

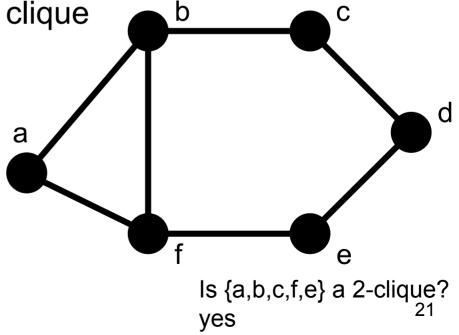

{c,d,e} is the

only clique

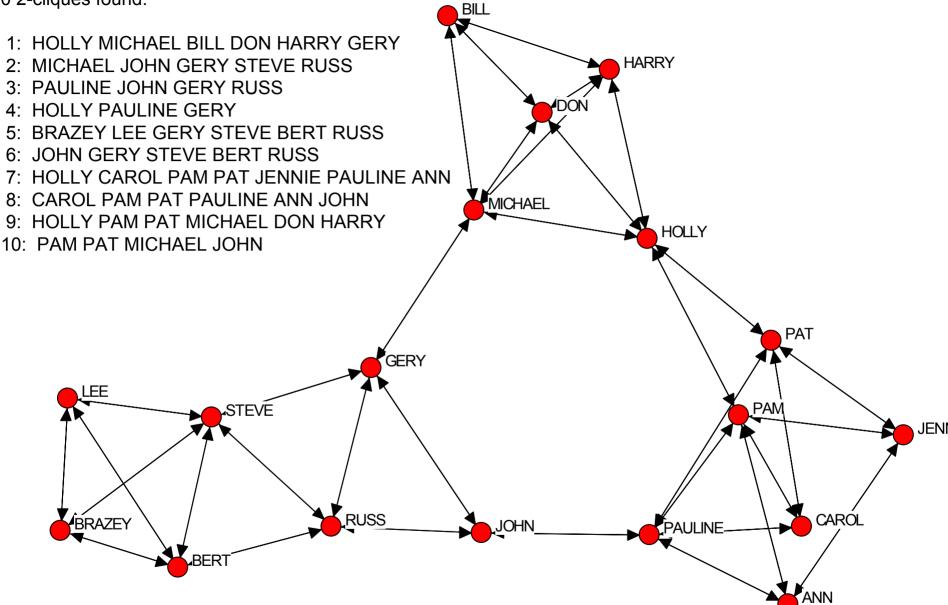
е

d

10 cliques found.

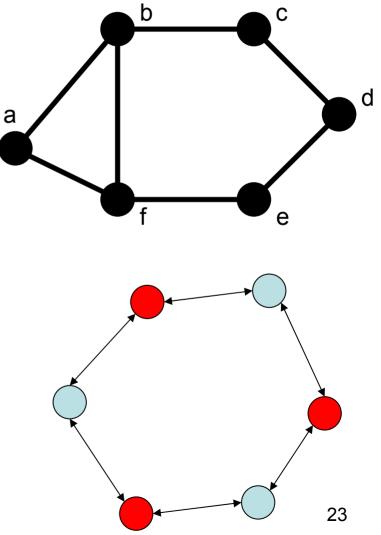

Types of Relaxations

- Distance (length of paths)
 N-clique, n-clan, n-club
- Density (number of ties)

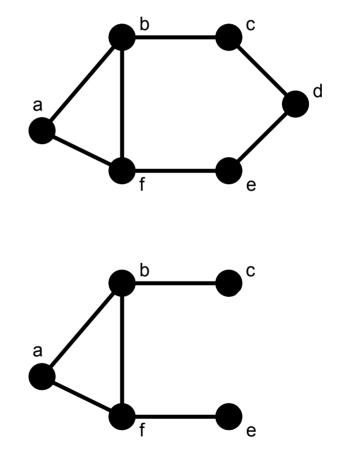

- K-plex, Is-set, lambda set, k-core, component

N-cliques

- Definition
 - Maximal subset s.t. for all u, v in S, $d(u, v) \le n$
 - Distance among members less than specified maximum
 - When n = 1, we have a clique
- Properties
 - Relaxes notion of clique
 - Avg distance can be greater than 1



10 2-cliques found.


Issues with N-Cliques

- Overlapping
 - {a,b,c,f,e} and {b,c,d,f,e} are both 2-cliques
- Membership criterion satisfiable through nonmembers
- Even 2-cliques can be fairly non-cohesive
 - Red nodes belong to same 2clique but none are adjacent

Subgraphs

- Set of nodes
 - Is just a set of nodes
- A subgraph
 - Is set of nodes together with ties among them
- An induced subgraph
 - Subgraph defined by a set of nodes
 - Like pulling the nodes and ties out of the original graph

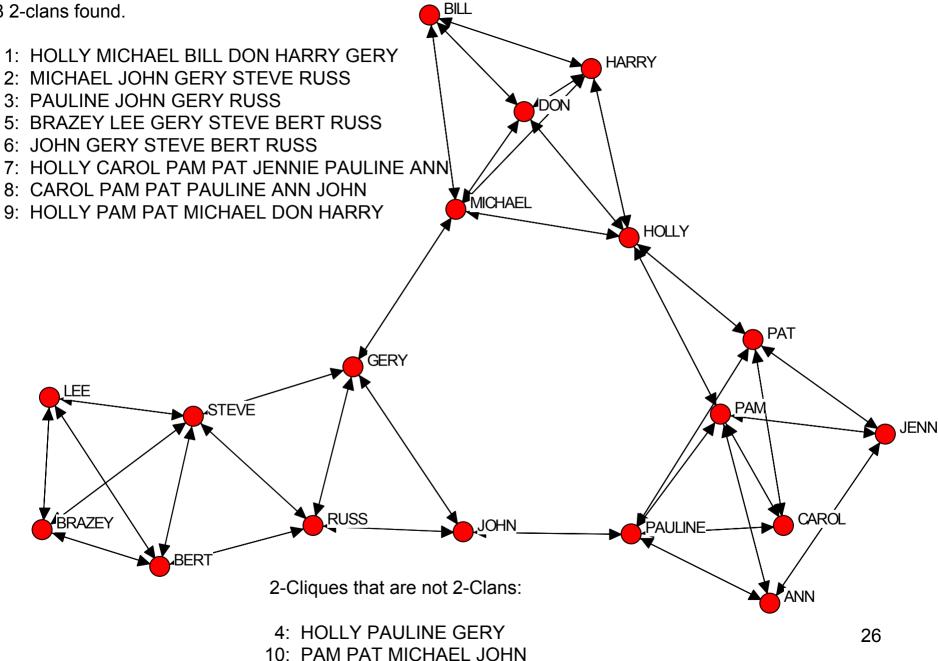
Subgraph induced by {a,b,c,f,e}

N-Clan

- Definition
 - An n-clique S whose diameter in the subgraph induced by S is <= n</p>

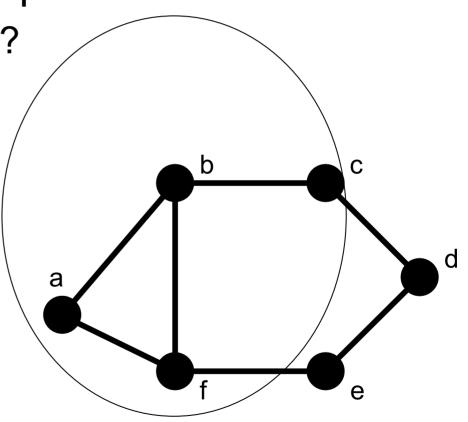
а

С

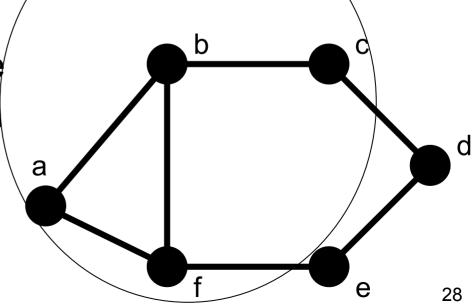

e

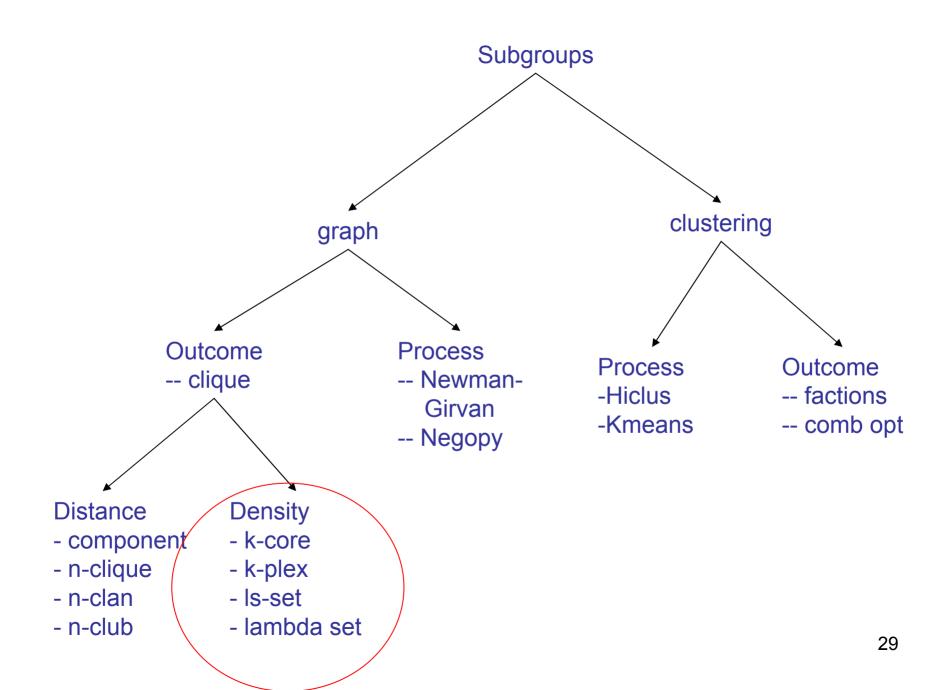
Is {a,b,c,f,e} a 2-clan?

d


- Members of set within n links
 of each other without using
 outsiders
- Properties
 - More cohesive than n-cliques

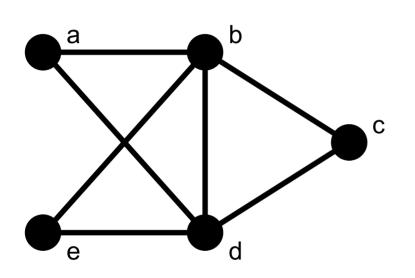
8 2-clans found.

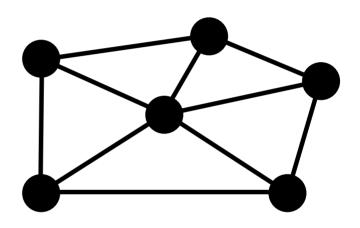

N-Clan Issues


- n-clique membership a bother
 - Is {a,b,c,f} a 2-clan?
 - List all 2-clans
- few found in data
- overlapping

N-Club

- Definition
 - A maximal subset S whose diameter in the subgraph induced by S is <= n</p>
 - No n-clique requirement
- Properties
 - Painful to compute
 - More plentiful than n-clans
 - overlapping

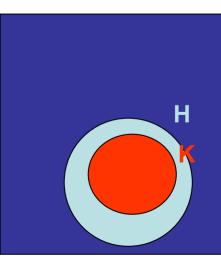



K-Plexes

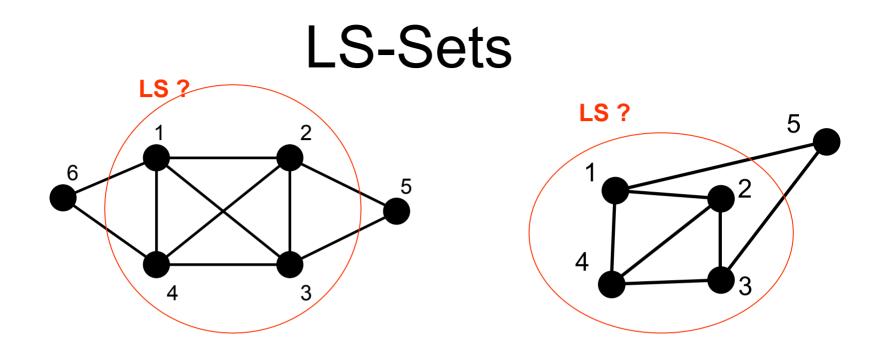
- Definition
 - A k-plex is a [maximal] subset S s.t. for all u in S, $\alpha(u,S) >= |S|-k$, where |S| is size of set S
- Properties
 - Subsets of k-plexes are k-plexes
 - Limited diameter (i.e., get distance as freebie)
 - If k < (|S|+2)/2 then diameter <= 2
 - Very numerous & overlapping
 - Sometimes better match to intuition than distance relaxations

K-Plex

Is {a,b,d,e} a 2-plex? Is {a,b,c,d,e} a 2-plex? Is {a,b,d} a 2-plex?

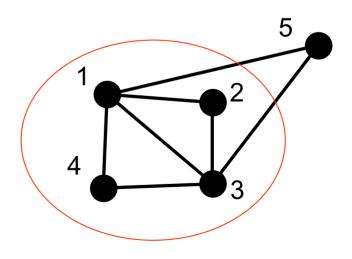

Is the graph as a whole a 2-plex? Is it a 3-plex?

LS-Sets


- Definition
 - Given a graph G(V,E), let H be a subset of V, and let K be <u>any</u> proper subset of H
 - H is LS if α (K,H-K) > α (K,V-H) for all K
 - All subsets of the LS set are more connected to other LS members than outsiders of LS set

or...

- -H is **LS** if $\alpha(K) > \alpha(H)$
 - Subsets better off joining LS set
 - This one's usually easier to compute


V

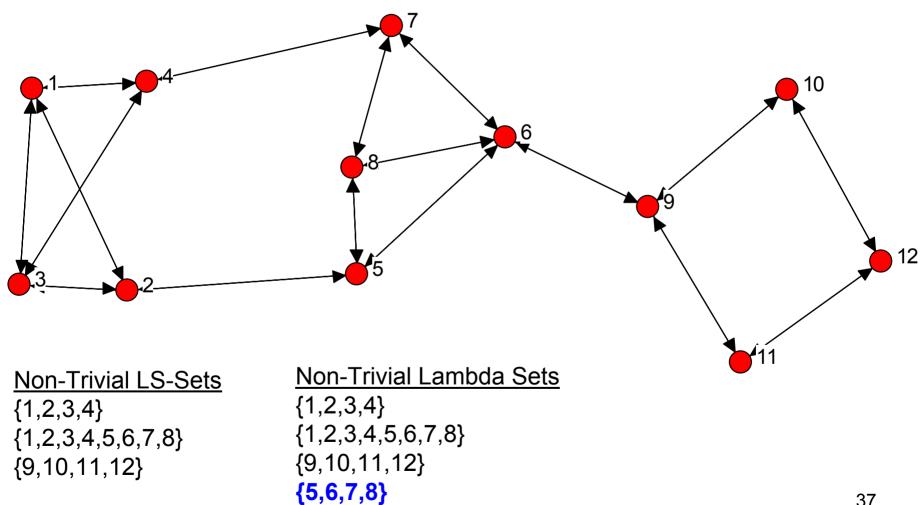
- H is LS if α(K,H-K) > α(K,V-H)
 - Use when K is large

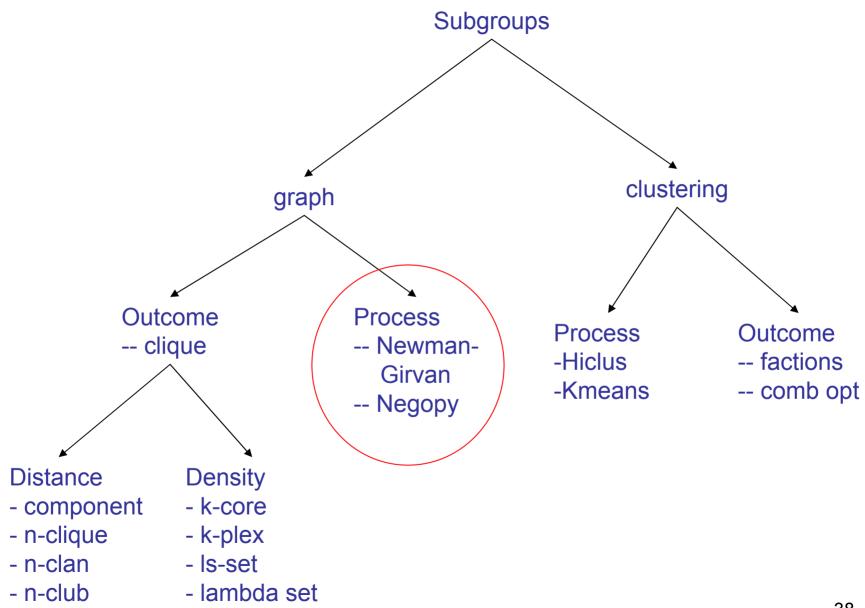
or ...

H is LS if α(K) > α(H)
 Use when K is small

LS-Sets

- Properties very cohesive
 - Wholly nested or disjoint: no partial overlaps
 - More ties within than between (doesn't just consider density inside density)
 - Contain no minimum weight cutsets (lie on either side of "fault lines")
 - Multiple edge-independent paths within
 - High edge-connectivity

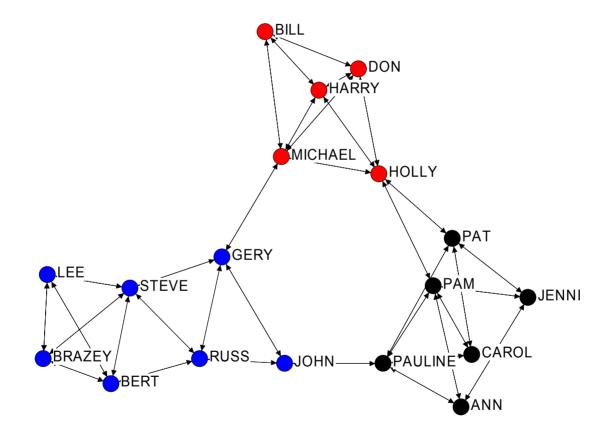

Lambda Operator


- Let λ(u,v) be the number of edgeindependent paths from node u to node v
- λ(u,v) is also the minimum number of ties that must be removed from the network in order to disconnect u and v

Lambda Sets

- Definition
 - A set of nodes S is a lambda set if for all *a,b,c* in S and *d* not in S, λ(a,b) > λ(c,d)
 - More independent paths to other group members than to outsiders
- Properties
 - Robust
 - very difficult to disconnect even with intelligent attack
 - Mutually exclusive or wholly inclusive
 - No partially overlapping groups
 - Pure like n-clubs, defined on a single attribute

Lambda Sets

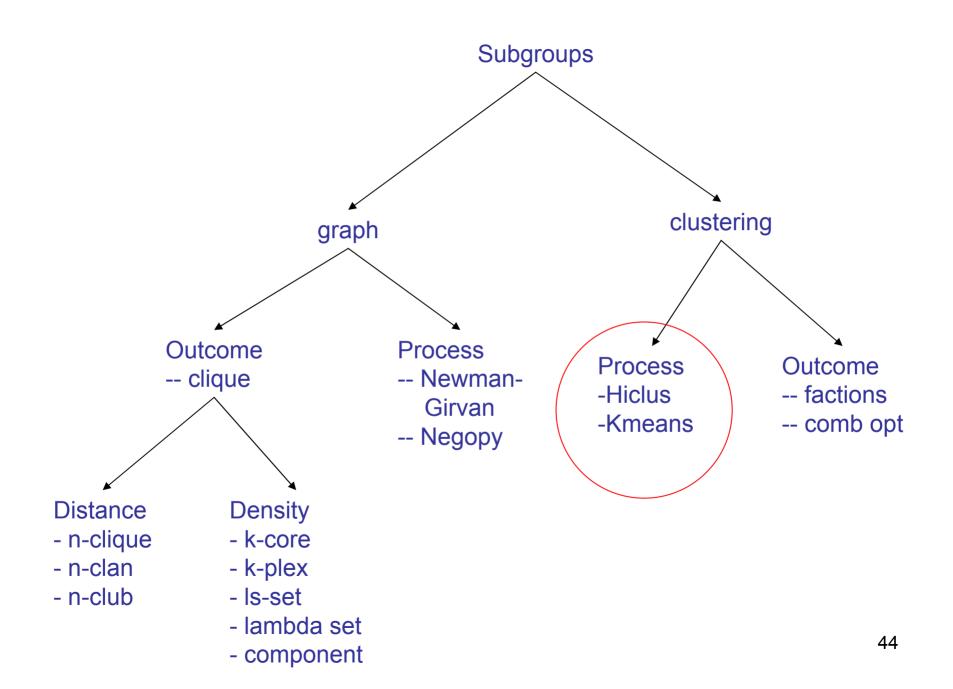


Newman-Girvan

- Successively deleting the tie with the most edge betweenness, and identifying components, then recalculating betweenness
- Yields a hierarchical clustering

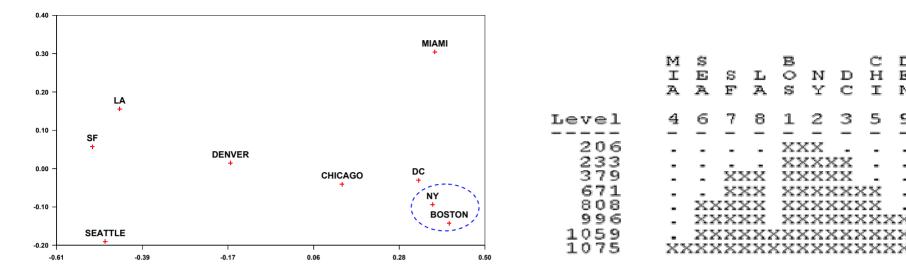
Newman-Girvan

Proximities / Clustering and Scaling Methods


- First compute dyadic cohesion matrix
 - E.g. geodesic distance
- Then cluster or scale
 - Two major kinds of clustering routines
 - Process-defined
 - Outcome-defined
- Typical result is a partition

Partitions

- Partition P is just an assignment of nodes to classes
 - P(i) gives the class of node i
 - Every node assigned to one & only one class
- A partition P is nested in partition M if for all nodes i and j, P(i)=P(j) implies M(i)=M(j)
- Trivial partitions
 - Identity: P(i) = i for all i
 - Complete: P(i) = 1 for all i


Process-Defined Clustering

- Heuristic definitions
 - Multivariate methods
 - Johnson's hierarchical
 - Wards
 - K-means
 - Graph-theoretic / Network methods
 - Newman-Girvan
- Sometimes specify number of groups a priori, sometimes not

Johnson's Hierarchical Clustering

- Output is a set of nested partitions, starting with identity partition and ending with the complete partition
- Different flavors based on how distance from a point to a cluster is defined
 - Single linkage; connectedness; minimum
 - Complete linkage; diameter; maximum
 - Average, median, etc.

	BOS	NY	DC	MIA	CHI	SEA	SF	LA	DEN
BOS	0	206	429	1504	963	2976	3095	2979	1949
NY	206	0	233	1308	802	2815	2934	2786	1771
DC	429	233	0	1075	75 671 2684		2799	2631	1616
MIA	1504	1308	1075	0	1329	3273	3053	2687	2037
CHI	963	802	671	1329	0	2013	2142	2054	996
SEA	2976	2815	2684	3273	2013	0	808	1131	1307
SF	3095	2934	2799	3053	2142	808	0	379	1235
LA	2979	2786	2631	2687	2054	1131	379	0	1059
DEN	1949	1771	1616	2037	996	1307	1235	1059	0

Closest distance is NY-BOS = 206, so merge these.

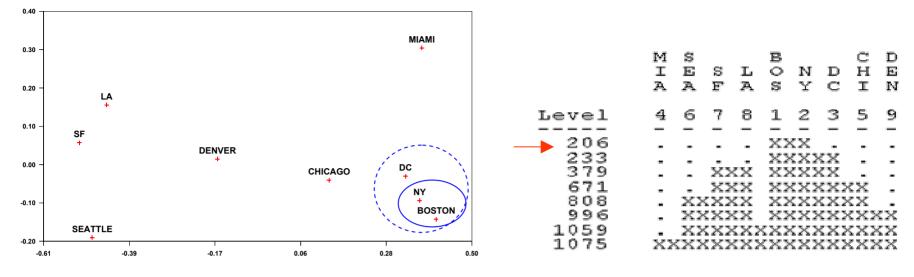
D E

N

9

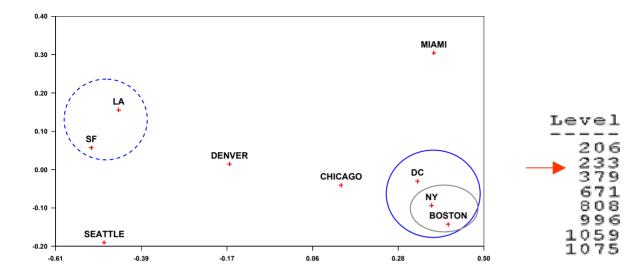
 \mathbf{C}

Ĥ

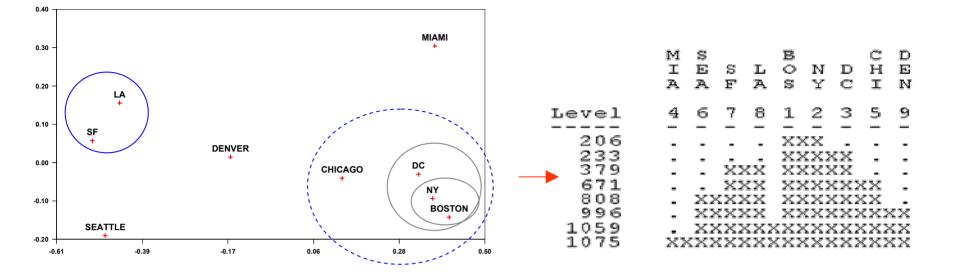

Ι

5

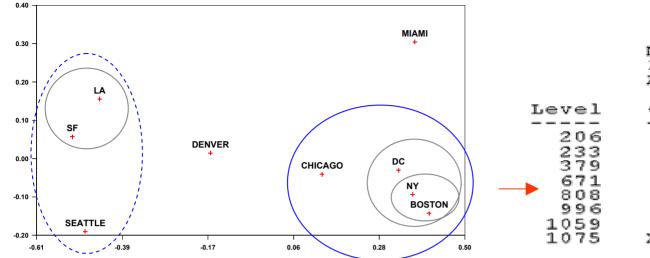
 \mathbf{D}


 \mathbf{C}

З

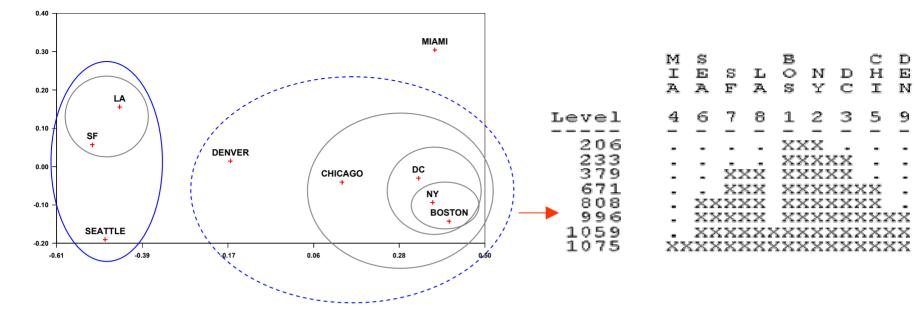

	BOS N Y	DC	MIA	CHI	SEA	SF	LA	DEN
BOS/ NY	0	223	1308	802	2815	2934	2786	1771
DC	223	0	1075	671	2684	2799	2631	1616
MIA	1308	1075	0	1329	3273	3053	2687	2037
СНІ	802	671	1329	0	2013	2142	2054	996
SEA	2815	2684	3273	2013	0	808	1131	1307
SF	2934	2799	3053	2142	808	0	379	1235
LA	2786	2631	2687	2054	1131	379	0	1059
DEN	1771	1616	2037	996	1307	1235	1059	0

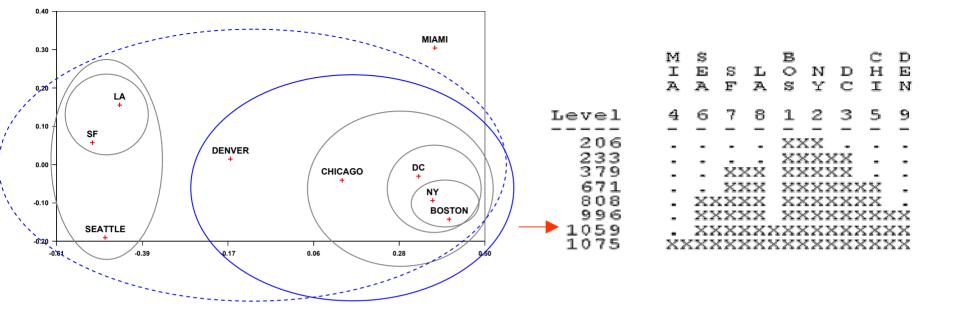
Closest pair is DC to BOSNY combo @ 223. So merge these.



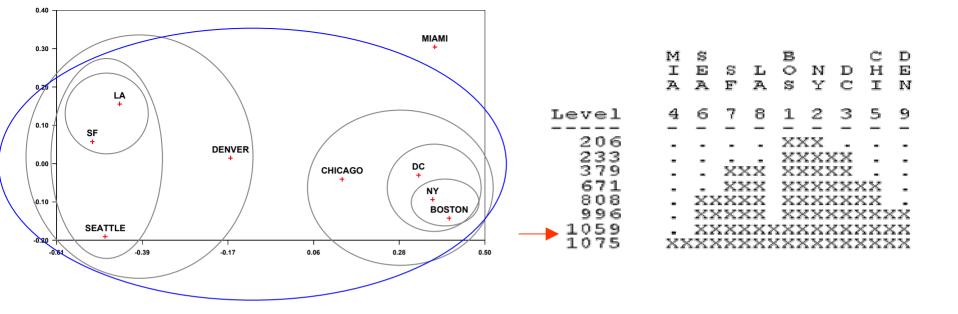
M I A	s E A	s F	L A	B O S	и Y	D C	C H I	D E N
4	6	7	8	1	2	3	5	9
_		_	_	-	—	_	_	—
-	-	-	-	Χ2	XΣ	-	-	-
-	-	-	-		<u> (X3</u>		-	-
-	-	X_2	\propto	X2	CX 2	\sim	-	
-	-	X^{2}	\mathcal{C}	$\times 2$	CX2	<x2< td=""><td>222</td><td>-</td></x2<>	222	-
-	$X \Sigma$	(X2	X >	$X\Sigma$	CX2	$\langle X \rangle$	KΣ	-
-	\times 2	CX2	X 2	\times 2	CX2	<2X2	C2C2	Z2C
-	$X \Sigma$	(X2)	<x2< td=""><td>$\langle X \rangle$</td><td>(X2</td><td><x></x></td><td><x></x></td><td>XX</td></x2<>	$\langle X \rangle$	(X2	<x></x>	<x></x>	XX
XX	X2	(X2	<x></x>	(X)	(X)	(X)	(X)	XΖ

	BOS/ NY/ DC	MIA	СНІ	SEA	SF	LA	DEN
BOS/NY DC	0	1075	671	2684	2799	2631	1616
MIA	1075	0	1329	3273	3053	2687	2037
CHI	671	1329	0	2013	2142	2054	996
SEA	2684	3273	2013	0	808	1131	1307
SF	2799	3053	2142	808	0	379	1235
LA	2631	2687	2054	1131	379	0	1059
DEN	1616	2037	996	1307	1235	1059	0


	BOS/ NY/DC	MIA	СНІ	SEA	SF/LA	DEN
BOS/NY/DC	0	1075	671	2684	2631	1616
MIA	1075	0	1329	3273	2687	2037
СНІ	671	1329	0	2013	2054	996
SEA	2684	3273	2013	0	808	1307
SF/LA	2631	2687	2054	808	0	1059
DEN	1616	2037	996	1307	1059	0

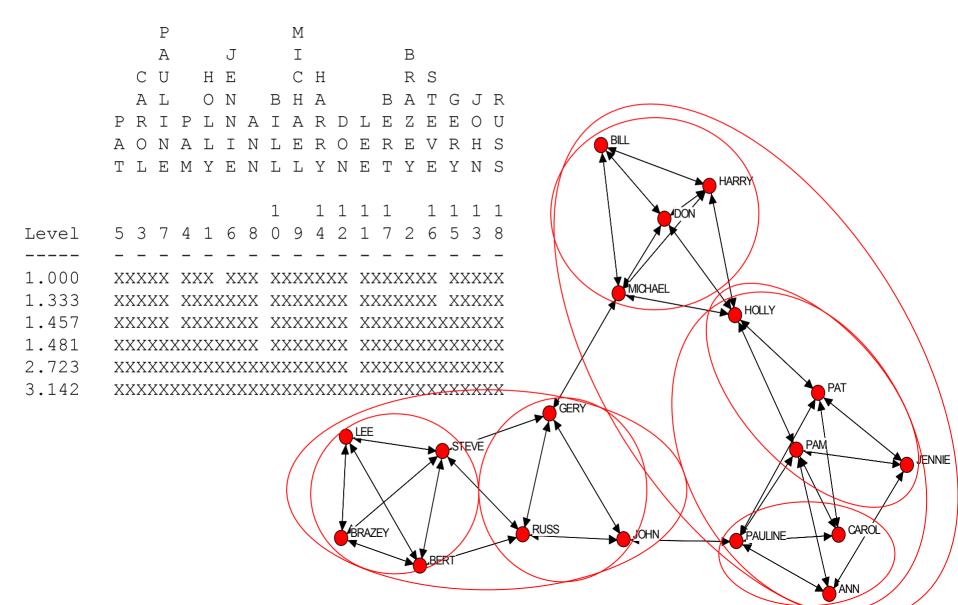

-

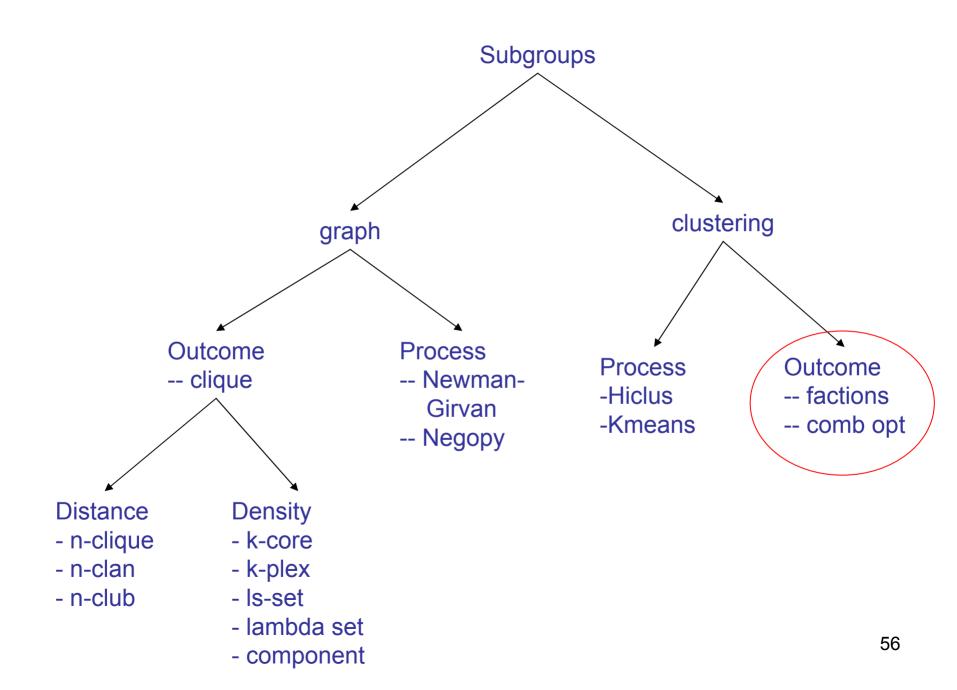
M I A	s E A	s F	L A	B O S	N Ү	D C	C H I	D E N
4	6	7	8	1	2	3	5	9
—	-	_		—	_	—	—	_
-	-	-	-	X_2	XΣ	-	-	-
-	-	-	-	X_2	\mathcal{C}	ζX.	-	-
-	-	X_{2}	KX	X_{2}	KX3	KΧ	-	-
-	-	X2	626	X_2	6262	6262	6 XC -	-
-	$X \Sigma$	222	CX -	X2	< X 2	<x2< td=""><td>KΧ</td><td>-</td></x2<>	KΧ	-
-	\times 2	282	22	202	CX2	6262	6262	KΣ
-	$X \Sigma$	(X2	$\langle X \rangle$	(X)	۲X2	<x></x>	<x></x>	X
XX	CX2	CX2	<x2< td=""><td>(X2</td><td><x2< td=""><td><x3< td=""><td>CX2</td><td>٢X</td></x3<></td></x2<></td></x2<>	(X2	<x2< td=""><td><x3< td=""><td>CX2</td><td>٢X</td></x3<></td></x2<>	<x3< td=""><td>CX2</td><td>٢X</td></x3<>	CX2	٢X


	BOS/ NY/D C/ CHI	MIA	SEA	SF/L A	DEN
BOS/NY/DC/C HI	0	1075	2013	2054	996
MIA	1075	0	3273	2687	2037
SEA	2013	3273	0	808	1307
SF/LA	2054	2687	808	0	1059
DEN	996	2037	1307	1059	0

	BOS/ NY/D C/C HI	MIA	SF/L A/SE A	DEN
BOS/NY/DC/ CHI	0	1075	2013	996
MIA	1075	0	2687	2037
SF/LA/SEA	2054	2687	0	1059
DEN	996	2037	1059	0

	BOS/ NY/D C/CHI /DEN	MIA	SF/LA /SEA
BOS/NY/DC/ CHI/DEN	0	1075	1059
MIA	1075	0	2687
SF/LA/SEA	1059	2687	0

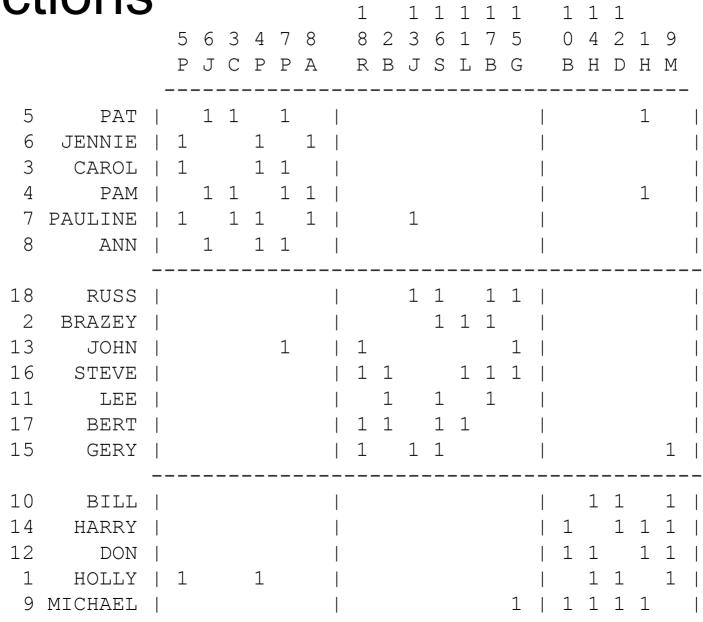



	BOS/ NY/D C/CH I/DE N/SF/ LA/S	
	EA	MIA
BOS/NY/DC/CHI/DEN/SF/L		
A/SEA	0	1075
MIA	1075	0

Geodesic Distances

											1	1	1	1	1	1	1	1	1
		1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8
		Η	В	С	Ρ	Ρ	J	Ρ	А	М	В	L	D	J	Η	G	S	В	R
		-	-	-	-	-	-	-	-	-	-	-	-	-	—	-	-	-	—
1	HOLLY	0	4	2	1	1	2	2	2	1	2	4	1	3	1	2	3	4	3
2	BRAZEY	4	0	5	5	5	6	4	5	3	4	1	4	3	4	2	1	1	2
3	CAROL	2	5	0	1	1	2	1	2	3	4	5	3	2	3	3	4	4	3
4	PAM	1	5	1	0	2	1	1	1	2	3	5	2	2	2	3	4	4	3
5	PAT	1	5	1	2	0	1	1	2	2	3	5	2	2	2	3	4	4	3
6	JENNIE	2	6	2	1	1	0	2	1	3	4	6	3	3	3	4	5	5	4
7	PAULINE	2	4	1	1	1	2	0	1	3	4	4	3	1	3	2	3	3	2
8	ANN	2	5	2	1	2	1	1	0	3	4	5	3	2	3	3	4	4	3
9	MICHAEL	1	3	3	2	2	3	3	3	0	1	3	1	2	1	1	2	3	2
10	BILL	2	4	4	3	3	4	4	4	1	0	4	1	3	1	2	3	4	3
11	LEE	4	1	5	5	5	6	4	5	3	4	0	4	3	4	2	1	1	2
12	DON	1	4	3	2	2	3	3	3	1	1	4	0	3	1	2	3	4	3
13	JOHN	3	3	2	2	2	3	1	2	2	3	3	3	0	3	1	2	2	1
14	HARRY	1	4	3	2	2	3	3	3	1	1	4	1	3	0	2	3	4	3
15	GERY	2	2	3	3	3	4	2	3	1	2	2	2	1	2	0	1	2	1
16	STEVE	3	1	4	4	4	5	3	4	2	3	1	3	2	3	1	0	1	1
17	BERT	4	1	4	4	4	5	3	4	3	4	1	4	2	4	2	1	0	1
18	RUSS	3	2	3	3	3	4	2	3	2	3	2	3	1	3	1	1	1	0

Hierarchical Clustering


Factions

- Outcome-Defined Clustering
- Input is proximity matrix X

 Could be similarities or distances
- Assign items to clusters such that
 - For similarities, maximize similarities within cluster while minimizing similarities between clusters
 - For distances, minimize distance within cluster while maximizing distances between clusters
- Optimize explicit fitness function

 Correlation with idealized image matrix
- Typically choose # of groups a priori

Factions

