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Emergent Groups:
Detecting an Emergent Subgroup

-Clumpiness
-Regions

-Subgroups
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Transitivity

• Proportion of triples with 3 ties as a 
proportion of triples with 2 or more ties
– Aka the clustering coefficient

{C,T,E} is a 
transitive triple, 
but {B,C,D} is not. 
{A,D,T} is not 
counted at all.

T

A

B C

D
E

cc = 2/6 = 33%
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Network Regions
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Network Regions

• Large “contiguous” areas 
• Areas that contain cohesive subgroups
• We will cover:

– Components
– K-Cores
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Graph Terminology

• A graph G(V,E) consists of a set of nodes 
V and a set of lines E. Each line e ∈ E 
consists of a pair of nodes (u,v)

• A graph G’ is a subgraph of a graph G if 
every line in E(G’) is in E(G), and every 
node in V(G’) is in V(G).

• The subgraph S induced by a set of nodes 
consists of those nodes together with all
ties among them
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Components

• A subgraph S of a graph G is a component 
if S is maximal and connected
– Connected means that every node can reach 

every other by some path (no matter how 
long)
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Components in Digraphs

• If G is a digraph, then 
– S is a weak component if it is a component of 

the underlying (undirected) graph
• i.e., we allow semi-paths rather than require true 

directed paths
– S is a strong component if for all u,v in S, 

there is a path from u to v
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Notes on Components

• Isolates are (very small) components
• Finding components is often first step in 

analysis of large graphs
– Often analyze each component separately, or 

discard very small components
– Many network measures require a connected 

graph, so they don’t work on graphs with 
multiple components
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Alpha Operator

• Let α(S1,S2) be the number of ties from 
members of set S1 to members of the set 
S2

• α(u,S) is number of ties node u has with 
members of set S

• α(S)  = α(S,V-S) is number of ties from 
members of set S to members of V-S (i.e., 
all other nodes)
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K-Core
• A subgraph S is a k-core if for all u ∈ S, α(u,S) 

>= k, and S is maximal

– S=G is 1-core & 2-core; S = {1..8} is 3-core
– There is no 4-core or higher

1
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K-Core Notes

• Finds areas within which cohesive 
subgroups may be found

• Identifies fault lines across which cohesive 
subgroups do not span

• In large datasets, you can successively 
examine the 1-cores, the 2-cores, etc.
– Progressively narrowing to core of network
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Cohesive Subgroups
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Cohesive Subgroups

• Initially conceived of as formalizations of 
fundamental sociological concepts
– Primary groups
– Emergent groups

• Now typically thought of in terms of a 
technique for identifying groups within 
networks
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Canonical Hypothesis

• Members of group will have similar outcomes
– Ideas, attitudes, illnesses, behaviors

• Due to interpersonal transmission
– transference
– Influence / persuasion
– Co-construction of beliefs & practices

• As in communities of practice

• So group membership is independent var used 
to predict commonality of attitudes, beliefs, etc.
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Typology of Subgroups

Factions, 
combinatorial 
optimization

Johnson’s Hierarchical 
clustering; k-means; 
MDS

Proximities / 
Clustering

Clique, n-clique, n-
clan, n-club, k-plex, ls-
set, lambda-set, k-
core, component

Newman-Girvan
Network / 
Graph theory

OutcomeProcess
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Subgroups

graph proximities

Outcome
-- clique

Distance
- component
- n-clique
- n-clan
- n-club

Density
- k-core
- k-plex
- ls-set
- lambda set

Process
-Hiclus
-Kmeans

Outcome
-- factions
-- comb opt

Process
-- Newman-

Girvan
-- Negopy

Types of Approaches
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Subgroups

graph proximities

Outcome
-- clique

Distance
- component
- n-clique
- n-clan
- n-club

Density
- k-core
- k-plex
- ls-set
- lambda set

Process
-Hiclus
-Kmeans
-Newman

Outcome
-- factions
-- comb opt

Process
-- Newman-

Girvan
-- Negopy
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Cliques

• Definition
– Maximal, complete subgraph
– Set S s.t. for all u,v in S, (u,v) in E

• Properties
– Maximum density (1.0)
– Minimum distances (all 1)
– overlapping
– Strict a b

c

d

e f
a b

c

d

e f
a b

c

d

e f

{c,d,e} is the
only clique
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HOLLY

BRAZEY CAROL

PAM

PAT

JENNIE

PAULINE

ANN

MICHAEL

BILL

LEE

DON

JOHN

HARRY

GERY

STEVE

BERT

RUSS

10 cliques found.

1:  HOLLY MICHAEL DON HARRY
2:  BRAZEY LEE STEVE BERT
3:  CAROL PAT PAULINE
4:  CAROL PAM PAULINE
5:  PAM JENNIE ANN
6:  PAM PAULINE ANN
7:  MICHAEL BILL DON HARRY
8:  JOHN GERY RUSS
9:  GERY STEVE RUSS

10:  STEVE BERT RUSS



20

Types of Relaxations

• Distance (length of paths)
– N-clique, n-clan, n-club

• Density (number of ties)
– K-plex, ls-set, lambda set, k-core, component
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N-cliques

• Definition
– Maximal subset s.t. for all u,v in S, d(u,v) <= n
– Distance among members less than specified 

maximum
– When n = 1, we have a clique

• Properties
– Relaxes notion of

clique
• Avg distance 

can be greater 
than 1

a

b c

d

ef
Is {a,b,c,f,e} a 2-clique?
yes
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HOLLY

BRAZEY CAROL

PAM

PAT

JENN

PAULINE

ANN

MICHAEL

BILL

LEE

DON

JOHN

HARRY

GERY

STEVE

BERT

RUSS

10 2-cliques found.

1:  HOLLY MICHAEL BILL DON HARRY GERY
2:  MICHAEL JOHN GERY STEVE RUSS
3:  PAULINE JOHN GERY RUSS
4:  HOLLY PAULINE GERY
5:  BRAZEY LEE GERY STEVE BERT RUSS
6:  JOHN GERY STEVE BERT RUSS
7:  HOLLY CAROL PAM PAT JENNIE PAULINE ANN
8:  CAROL PAM PAT PAULINE ANN JOHN
9:  HOLLY PAM PAT MICHAEL DON HARRY

10:  PAM PAT MICHAEL JOHN
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Issues with N-Cliques

• Overlapping
– {a,b,c,f,e} and {b,c,d,f,e} are 

both 2-cliques
• Membership criterion 

satisfiable through non-
members

• Even 2-cliques can be 
fairly non-cohesive
– Red nodes belong to same 2-

clique but none are adjacent

a

b c

d

ef
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Subgraphs
• Set of nodes

– Is just a set of nodes

• A subgraph
– Is set of nodes together 

with ties among them

• An induced subgraph
– Subgraph defined by a set 

of nodes
– Like pulling the nodes and 

ties out of the original 
graph

a

b c

d

ef

a

b c

d

ef

Subgraph induced by {a,b,c,f,e}
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N-Clan

• Definition
– An n-clique S whose diameter in the subgraph 

induced by S is <=  n
– Members of set within n links 

of each other without using 
outsiders

• Properties
– More cohesive than

n-cliques

a

b c

d

ef
Is {a,b,c,f,e} a 2-clan?
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HOLLY

BRAZEY CAROL

PAM

PAT

JENNI

PAULINE

ANN

MICHAEL

BILL

LEE

DON

JOHN

HARRY

GERY

STEVE

BERT

RUSS

8 2-clans found.

1:  HOLLY MICHAEL BILL DON HARRY GERY
2:  MICHAEL JOHN GERY STEVE RUSS
3:  PAULINE JOHN GERY RUSS
5:  BRAZEY LEE GERY STEVE BERT RUSS
6:  JOHN GERY STEVE BERT RUSS
7:  HOLLY CAROL PAM PAT JENNIE PAULINE ANN
8:  CAROL PAM PAT PAULINE ANN JOHN
9:  HOLLY PAM PAT MICHAEL DON HARRY

2-Cliques that are not 2-Clans:

4:  HOLLY PAULINE GERY
10:  PAM PAT MICHAEL JOHN
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N-Clan Issues

• n-clique membership a bother
– Is {a,b,c,f} a 2-clan?
– List all 2-clans

• few found in data
• overlapping

a

b c

d

ef
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N-Club

• Definition
– A maximal subset S whose diameter in the 

subgraph induced by S is <= n
– No n-clique requirement

• Properties
– Painful to compute
– More plentiful than

n-clans
– overlapping

a

b c

d

efIs {a,b,c,f} a 2-club?
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Subgroups

graph clustering

Outcome
-- clique

Distance
- component
- n-clique
- n-clan
- n-club

Density
- k-core
- k-plex
- ls-set
- lambda set

Process
-Hiclus
-Kmeans

Outcome
-- factions
-- comb opt

Process
-- Newman-

Girvan
-- Negopy
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K-Plexes

• Definition
– A k-plex is a [maximal] subset S s.t. for all u in 

S, α(u,S) >= |S|-k, where |S| is size of set S
• Properties

– Subsets of k-plexes are k-plexes
– Limited diameter (i.e., get distance as freebie)

• If k < (|S|+2)/2 then diameter <= 2
– Very numerous & overlapping
– Sometimes better match to intuition than 

distance relaxations
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K-Plex

a b

c

de

Is the graph as a whole a 2-plex?
Is it a 3-plex? 

Is {a,b,d,e} a 2-plex?
Is {a,b,c,d,e} a 2-plex?
Is {a,b,d} a 2-plex?
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LS-Sets

• Definition
– Given a graph G(V,E), let H be a subset of V, 

and let K be any proper subset of H
– H is LS if α(K,H-K) > α(K,V-H) for all K

• All subsets of the LS set are more connected to 
other LS members than outsiders of LS set

or…
– H is LS if α(K) > α(H)

• Subsets better off joining LS set
• This one’s usually easier to compute

V

H
K
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LS-Sets
1 2

34

56

LS ?

1 2

4
3

5LS ?

• H is LS if α(K,H-K) > α(K,V-H)
– Use when K is large

or …
• H is LS if α(K) > α(H)

– Use when K is small

1 2

4
3

5
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LS-Sets

• Properties – very cohesive
– Wholly nested or disjoint: no partial overlaps
– More ties within than between (doesn’t just 

consider density inside density)
– Contain no minimum weight cutsets (lie on 

either side of “fault lines”)
– Multiple edge-independent paths within

• High edge-connectivity
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Lambda Operator

• Let λ(u,v) be the number of edge-
independent paths from node u to node v

• λ(u,v) is also the minimum number of ties 
that must be removed from the network in 
order to disconnect u and v
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Lambda Sets
• Definition

– A set of nodes S is a lambda set if for all a,b,c in S 
and d not in S, λ(a,b) > λ(c,d)

• More independent paths to other group members than to 
outsiders

• Properties
– Robust

• very difficult to disconnect even with intelligent attack
– Mutually exclusive or wholly inclusive

• No partially overlapping groups
– Pure – like n-clubs, defined on a single attribute
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Lambda Sets

1

23

4

5

6

7

8

9

10

11

12

Non-Trivial LS-Sets
{1,2,3,4}
{1,2,3,4,5,6,7,8}
{9,10,11,12}

Non-Trivial Lambda Sets
{1,2,3,4}
{1,2,3,4,5,6,7,8}
{9,10,11,12}
{5,6,7,8}
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Subgroups

graph clustering

Outcome
-- clique

Distance
- component
- n-clique
- n-clan
- n-club

Density
- k-core
- k-plex
- ls-set
- lambda set

Process
-Hiclus
-Kmeans

Outcome
-- factions
-- comb opt

Process
-- Newman-

Girvan
-- Negopy
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Newman-Girvan

• Successively deleting the tie with the most 
edge betweenness, and identifying 
components, then recalculating 
betweenness

• Yields a hierarchical clustering
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Newman-Girvan

HOLLY

BRAZEY CAROL

PAM

PAT

JENNI

PAULINE

ANN

MICHAEL

BILL

LEE

DON

JOHN

HARRY

GERY

STEVE

BERT

RUSS
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Proximities / Clustering and Scaling 
Methods

• First compute dyadic cohesion matrix
– E.g. geodesic distance

• Then cluster or scale
– Two major kinds of clustering routines

• Process-defined
• Outcome-defined

• Typical result is a partition
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Partitions

• Partition P is just an assignment of nodes 
to classes
– P(i) gives the class of node i
– Every node assigned to one & only one class

• A partition P is nested in partition M if for 
all nodes i and j, P(i)=P(j) implies M(i)=M(j)

• Trivial partitions
– Identity:  P(i) = i for all i
– Complete:  P(i) = 1 for all i
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Process-Defined Clustering

• Heuristic definitions
– Multivariate methods

• Johnson’s hierarchical
• Wards
• K-means

– Graph-theoretic / Network methods
• Newman-Girvan

• Sometimes specify number of groups a 
priori, sometimes not
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Subgroups

graph clustering

Outcome
-- clique

Distance
- n-clique
- n-clan
- n-club

Density
- k-core
- k-plex
- ls-set
- lambda set
- component

Process
-Hiclus
-Kmeans

Outcome
-- factions
-- comb opt

Process
-- Newman-

Girvan
-- Negopy
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Johnson’s Hierarchical Clustering

• Output is a set of nested partitions, 
starting with identity partition and ending 
with the complete partition

• Different flavors based on how distance 
from a point to a cluster is defined
– Single linkage; connectedness; minimum
– Complete linkage; diameter; maximum
– Average, median, etc.
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Geodesic Distances

1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
H B C P P J P A M B L D J H G S B R
- - - - - - - - - - - - - - - - - -

1   HOLLY  0 4 2 1 1 2 2 2 1 2 4 1 3 1 2 3 4 3
2  BRAZEY  4 0 5 5 5 6 4 5 3 4 1 4 3 4 2 1 1 2
3   CAROL  2 5 0 1 1 2 1 2 3 4 5 3 2 3 3 4 4 3
4     PAM  1 5 1 0 2 1 1 1 2 3 5 2 2 2 3 4 4 3
5     PAT  1 5 1 2 0 1 1 2 2 3 5 2 2 2 3 4 4 3
6  JENNIE  2 6 2 1 1 0 2 1 3 4 6 3 3 3 4 5 5 4
7 PAULINE  2 4 1 1 1 2 0 1 3 4 4 3 1 3 2 3 3 2
8     ANN  2 5 2 1 2 1 1 0 3 4 5 3 2 3 3 4 4 3
9 MICHAEL  1 3 3 2 2 3 3 3 0 1 3 1 2 1 1 2 3 2

10    BILL  2 4 4 3 3 4 4 4 1 0 4 1 3 1 2 3 4 3
11     LEE  4 1 5 5 5 6 4 5 3 4 0 4 3 4 2 1 1 2
12     DON  1 4 3 2 2 3 3 3 1 1 4 0 3 1 2 3 4 3
13    JOHN  3 3 2 2 2 3 1 2 2 3 3 3 0 3 1 2 2 1
14   HARRY  1 4 3 2 2 3 3 3 1 1 4 1 3 0 2 3 4 3
15    GERY  2 2 3 3 3 4 2 3 1 2 2 2 1 2 0 1 2 1
16   STEVE  3 1 4 4 4 5 3 4 2 3 1 3 2 3 1 0 1 1
17    BERT  4 1 4 4 4 5 3 4 3 4 1 4 2 4 2 1 0 1
18    RUSS  3 2 3 3 3 4 2 3 2 3 2 3 1 3 1 1 1 0
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Hierarchical Clustering

HOLLY

BRAZEY CAROL

PAM

PAT

JENNIE

PAULINE

ANN

MICHAEL

BILL

LEE

DON

JOHN

HARRY

GERY

STEVE

BERT

RUSS

P           M                  
A     J     I         B        

C U   H E     C H       R S      
A L   O N   B H A     B A T G J R

P R I P L N A I A R D L E Z E E O U
A O N A L I N L E R O E R E V R H S
T L E M Y E N L L Y N E T Y E Y N S

1   1 1 1 1   1 1 1 1
Level   5 3 7 4 1 6 8 0 9 4 2 1 7 2 6 5 3 8
----- - - - - - - - - - - - - - - - - - -
1.000   XXXXX XXX XXX XXXXXXX XXXXXXX XXXXX
1.333   XXXXX XXXXXXX XXXXXXX XXXXXXX XXXXX
1.457   XXXXX XXXXXXX XXXXXXX XXXXXXXXXXXXX
1.481   XXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXX
2.723   XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX
3.142   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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Subgroups

graph clustering

Outcome
-- clique

Distance
- n-clique
- n-clan
- n-club

Density
- k-core
- k-plex
- ls-set
- lambda set
- component

Process
-Hiclus
-Kmeans

Outcome
-- factions
-- comb opt

Process
-- Newman-

Girvan
-- Negopy
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Factions
• Outcome-Defined Clustering
• Input is proximity matrix X

– Could be similarities or distances
• Assign items to clusters such that 

– For similarities, maximize similarities within cluster 
while minimizing similarities between clusters

– For distances, minimize distance within cluster while 
maximizing distances between clusters

• Optimize explicit fitness function
– Correlation with idealized image matrix

• Typically choose # of groups a priori



58

Factions 1   1 1 1 1 1   1 1 1      
5 6 3 4 7 8   8 2 3 6 1 7 5   0 4 2 1 9  
P J C P P A   R B J S L B G   B H D H M  
-----------------------------------------

5     PAT |   1 1   1   |               |       1   |
6  JENNIE | 1     1   1 |               |           |
3   CAROL | 1     1 1   |               |           |
4     PAM |   1 1   1 1 |               |       1   |
7 PAULINE | 1   1 1   1 |     1         |           |
8     ANN |   1   1 1   |               |           |

-------------------------------------------
18    RUSS |             |     1 1   1 1 |           |
2  BRAZEY |             |       1 1 1   |           |
13    JOHN |         1   | 1           1 |           |
16   STEVE |             | 1 1     1 1 1 |           |
11     LEE |             |   1   1   1   |           |
17    BERT |             | 1 1   1 1     |           |
15    GERY |             | 1   1 1       |         1 |

-------------------------------------------
10    BILL |             |               |   1 1   1 |
14   HARRY |             |               | 1   1 1 1 |
12     DON |             |               | 1 1   1 1 |
1   HOLLY | 1     1     |               |   1 1   1 |
9 MICHAEL |             |             1 | 1 1 1 1   |

------------------------------------------
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