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Units of Analysis
• Dyadic (tie-level)

– The raw data
– Cases are pairs of actors
– Variables are attributes of the relationship among pairs (e.g., strength of 

friendship; whether give advice to; hates)
– Each variable is an actor-by-actor matrix of values, one for each pair

• Monadic (actor-level)
– Cases are actors
– Variables are aggregations that count number of ties a node has, or 

sum of distances to others (e.g., centrality)
– Each variable is a vector of values, one for each actor

• Network (group-level)
– Cases are whole groups of actors along with ties among them
– Variables aggregations that count such things as number of ties in the 

network, average distance, extent of centralization, average centrality
– Each variable has one value per network
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Types of Hypotheses
• Dyadic (multiplexity)

– Friendship ties lead to business ties
– Social ties between leads to less formal contractual ties 

(embeddedness)
• Monadic

– Actors with more ties are more successful (social capital)
• Network

– Teams with greater density of communication ties perform better 
(group social capital)

• Mixed Dyadic-Monadic (autocorrelation)
– People prefer to make friends (dyad level) with people of the 

same gender (actor level) (homophily)
– Friends influence each other’s opinions
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Statistical Issues

• Samples non-random
• Often work with populations
• Observations not independent
• Distributions unknown
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Solutions

• Non-independence
– Model the non-independence explicitly as in 

HLM
• Assumes you know all sources of dependence

– Permutation tests
• Non-random samples/populations

– Permutation tests
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Logic of Permutation Test
• Compute test statistic 

– e.g., correlation or difference in means
– Correlation between centrality and salary is 0.384 or difference

in mean centrality between the boys and the girls is 4.95.
– Ask what are the chances of getting such a large correlation or 

such a large difference in means if the variables are actually 
completely independent?

• Wait! If the variables are independent, why would the 
correlation or difference in means be anything but zero?
– Sampling
– “Combinatorial chance”: if you flip coin 10 times, you expect 5 

heads and 5 tails, but what you actually get could be quite 
different
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Logic of Permutation Test
• So to evaluate an observed correlation between two 

variables of 0.384, we want to 
– correlate thousands of variables similar to the ones we are 

testing that we know are truly independent of each other, and 
– see how often these independent variables are correlated at a 

level as large as 0.384
• The proportion of random correlations as large observed value is

the p-value of the test

• How to obtain thousands of independent variables 
whose values are assigned independently of each other?
– Fill them with random values

• But need to match distribution of values
– Permute values of one with respect to the other
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Outline of Permutation Test

• Get observed test statistic
• Construct a distribution of test statistics 

under null hypothesis
– Thousands of permutations of actual data

• Count proportion of statistics on permuted 
data that are as large as the observed
– This is the p-value of the test
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Monadic Hypotheses

7.210chelsea
9.160akiro
3.350myeong-gu
6.640joao
8.150ulrik
8.170jean
4.130esteban
7.340mikko
9.520maria
2.110bill

GradesCentrality
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Dyadic Hypotheses
• Hubert / Mantel QAP test

– All variables are actor-by-
actor matrices

– We use one relation 
(dyadic variable) to predict 
another

– Test statistic is
– Significance is

• QAP correlation & MR-
QAP multiple regression
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Dyadic/Monadic Hypotheses
• One dyadic (relational) variable, one monadic 

(actor attribute) variable
– Technically known as autocorrelation

• Diffusion
– adjacency leads to similarity in actor attribute

• Spread of information; diseases

• Selection
– similarity leads to adjacency

• Homophily: birds of feather flocking together
• Heterophily: disassortative mating

• Tom Snijders’ SIENA model
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Categorical Autocorrelation
• Nodes partitioned into mutually exclusive 

categories, e.g., gender or race
• We expect more ties within group than between

– Boys interact w/ boys, girls w/ girls
• Count up number of ties between all ordered 

pairs of groups: 
– boys to boys, boys to girls, girls to boys, girls to girls

• Compare with number expected given 
independence of interaction and node 
characteristic
– i.e., if people choose partners without regard for 

gender
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Campnet Example

167Male
712Female

MaleFemale

Observed

10.318.3Male

18.36.4Female

MaleFemale

Expected

1.550.38Male

0.381.87Female

MaleFemale

Ratio
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Campnet Example
Density Table

1     2
Femal Male
----- -----

1 Fem  0.429 0.087
2 Mal  0.087 0.356

MODEL FIT

R-square Adj R-Sqr Probability    # of Obs
-------- --------- ----------- -----------

0.127     0.124       0.001         306

REGRESSION COEFFICIENTS

Un-stdized Stdized Proportion  Proportion
Independent Coefficient Coefficient Significance    As Large    As Small
----------- ----------- ----------- ------------ ----------- -----------
Intercept    0.087500    0.000000        1.000       1.000 0.001

Group 1    0.341071    0.313982        0.001       0.001 0.999
Group 2    0.268056    0.290782        0.001       0.001 0.999
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Continuous Autocorrelation

• Each node has score on continuous 
variable, such as age or rank

• Positive autocorrelation exists when nodes 
of similar age tend to be adjacent
– Friendships tend to be homophilous wrt age
– Mentoring tends to be heterophilous wrt age

• Can measure similarity via difference or 
product
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Geary’s C
• Let Wij > 0 indicate adjacency of nodes i and j, and Xi 

indicate the score of node i on attribute X (e.g., age)

• Range of values:  0 <= C <= 2
– C=1 indicates independence; 
– C > 1 indicates negative autocorrelation; 
– C < 1 indicates positive autocorrelation (homophily)
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Positive Autocorrelation
(Similars adjacent; Geary’s C < 1)
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Geary’s C:       0.333
Significance:    0.000
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No Autocorrelation
Random pattern; (Geary’s C = 1)
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Geary’s C:       1.000
Significance:    0.492
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Negative Autocorrelation
(Dissimilars adjacent; Geary’s C > 1)
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Geary’s C:       1.833
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Moran’s I

• Ranges between -1 and +1
• Expected value under independence is 

-1/(n-1)
• I +1 when positive autocorrelation
• I -1 when negative autocorrelation

∑∑
∑

−

−−
=

i
i

ji
ij

ji
jiij

xxw

xxxxw
nI 2

,

,

)(

))((



21

Positive Autocorrelation
(Similars adjacent; Moran’s I > -0.125)
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Moran’s I:        0.500
Significance:    0.000
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No Autocorrelation
Independence; (Moran’s I ≈ -0.125)
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Significance:    0.335
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Negative Autocorrelation
(Dissimilars adjacent; Moran’s I < -0.125)
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