Testing Network Hypotheses

Steve Borgatti

Revised 20 July, 2004. Colchester, U.K.

Units of Analysis

- Dyadic (tie-level)
 - The raw data
 - Cases are pairs of actors
 - Variables are attributes of the relationship among pairs (e.g., strength of friendship; whether give advice to; hates)
 - Each variable is an actor-by-actor matrix of values, one for each pair
- Monadic (actor-level)
 - Cases are actors
 - Variables are aggregations that count number of ties a node has, or sum of distances to others (e.g., centrality)
 - Each variable is a vector of values, one for each actor
- Network (group-level)
 - Cases are whole groups of actors along with ties among them
 - Variables aggregations that count such things as number of ties in the network, average distance, extent of centralization, average centrality
 - Each variable has one value per network

Types of Hypotheses

- Dyadic (multiplexity)
 - Friendship ties lead to business ties
 - Social ties between leads to less formal contractual ties (embeddedness)
- Monadic
 - Actors with more ties are more successful (social capital)
- Network
 - Teams with greater density of communication ties perform better (group social capital)
- Mixed Dyadic-Monadic (autocorrelation)
 - People prefer to make friends (dyad level) with people of the same gender (actor level) (homophily)
 - Friends influence each other's opinions

Statistical Issues

- Samples non-random
- Often work with populations
- Observations not independent
- Distributions unknown

Solutions

- Non-independence
 - Model the non-independence explicitly as in HLM
 - Assumes you know all sources of dependence
 - Permutation tests
- Non-random samples/populations
 - Permutation tests

Logic of Permutation Test

- Compute test statistic
 - e.g., correlation or difference in means
 - Correlation between centrality and salary is 0.384 or difference in mean centrality between the boys and the girls is 4.95.
 - Ask what are the chances of getting such a large correlation or such a large difference in means if the variables are actually completely independent?
- Wait! If the variables are independent, why would the correlation or difference in means be anything but zero?
 - Sampling
 - "Combinatorial chance": if you flip coin 10 times, you expect 5 heads and 5 tails, but what you actually get could be quite different

Logic of Permutation Test

- So to evaluate an observed correlation between two variables of 0.384, we want to
 - correlate thousands of variables similar to the ones we are testing that we <u>know</u> are truly independent of each other, and
 - see how often these independent variables are correlated at a level as large as 0.384
 - The proportion of random correlations as large observed value is
 the p-value of the test
- How to obtain thousands of independent variables whose values are assigned independently of each other?
 - Fill them with random values
 - But need to match distribution of values
 - Permute values of one with respect to the other

Outline of Permutation Test

- Get observed test statistic
- Construct a distribution of test statistics under null hypothesis
 - Thousands of permutations of actual data
- Count proportion of statistics on permuted data that are as large as the observed

This is the p-value of the test

Monadic Hypotheses

	Centrality	Grades
bill	10	2.1
maria	20	9.5
mikko	40	7.3
esteban	30	4.1
jean	70	8.1
ulrik	50	8.1
joao	40	6.6
myeong-gu	50	3.3
akiro	60	9.1
chelsea	10	7.2

Dyadic Hypotheses

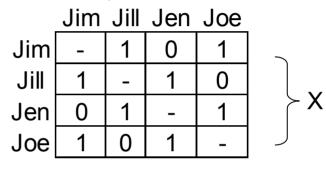
- Hubert / Mantel QAP test
 - All variables are actor-byactor matrices
 - We use one relation (dyadic variable) to predict another
 - Test statistic is $\gamma = \sum \sum x_{ij} y_{ij}$
 - Significance is

$$prop(\gamma \geq \gamma^{P}),$$

$$\gamma^P = \sum_i \sum_j x_{ij} y_{p(i)p(j)}$$

 QAP correlation & MR-QAP multiple regression

Friendship



Proximity

Jim	Jill	Jen	Joe	
-	3	9	2	
3	I	1	15	Υ
9	1	I	3	
2	15	3	I	
	- 3	- 3 3 - 9 1	- 3 9 3 - 1 9 1 -	3 - 1 15 9 1 - 3

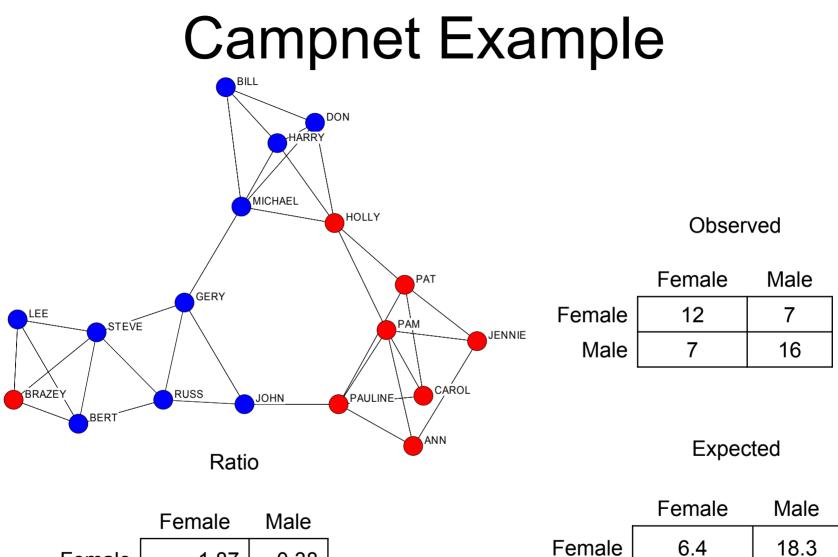
Dyadic/Monadic Hypotheses

- One dyadic (relational) variable, one monadic (actor attribute) variable
 - Technically known as autocorrelation
- Diffusion
 - adjacency leads to similarity in actor attribute
 - Spread of information; diseases
- Selection
 - similarity leads to adjacency
 - Homophily: birds of feather flocking together
 - Heterophily: disassortative mating
- Tom Snijders' SIENA model

Categorical Autocorrelation

- Nodes partitioned into mutually exclusive categories, e.g., gender or race
- We expect more ties within group than between

 Boys interact w/ boys, girls w/ girls
- Count up number of ties between all ordered pairs of groups:
 - boys to boys, boys to girls, girls to boys, girls to girls
- Compare with number expected given independence of interaction and node characteristic
 - i.e., if people choose partners without regard for gender

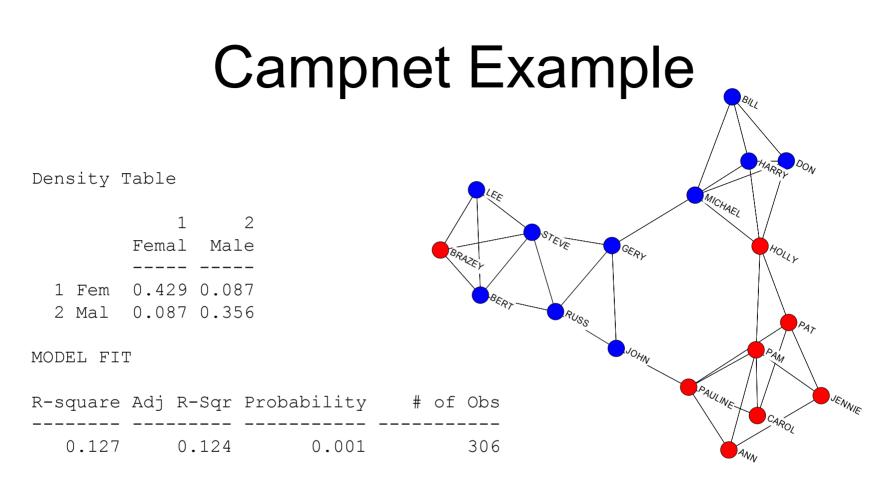


	i omalo	Maio	
Female	1.87	0.38	
Male	0.38	1.55	

10.3

Male

18.3



REGRESSION COEFFICIENTS

Independent	Un-stdized Coefficient		Significance	Proportion As Large	Proportion As Small
Intercept	0.087500	0.00000	1.000	1.000	0.001
Group 1	0.341071	0.313982	0.001	0.001	0.999
Group 2	0.268056	0.290782	0.001	0.001	0.999 14

Continuous Autocorrelation

- Each node has score on continuous variable, such as age or rank
- Positive autocorrelation exists when nodes of similar age tend to be adjacent
 - Friendships tend to be homophilous wrt age
 - Mentoring tends to be heterophilous wrt age
- Can measure similarity via difference or product

Geary's C

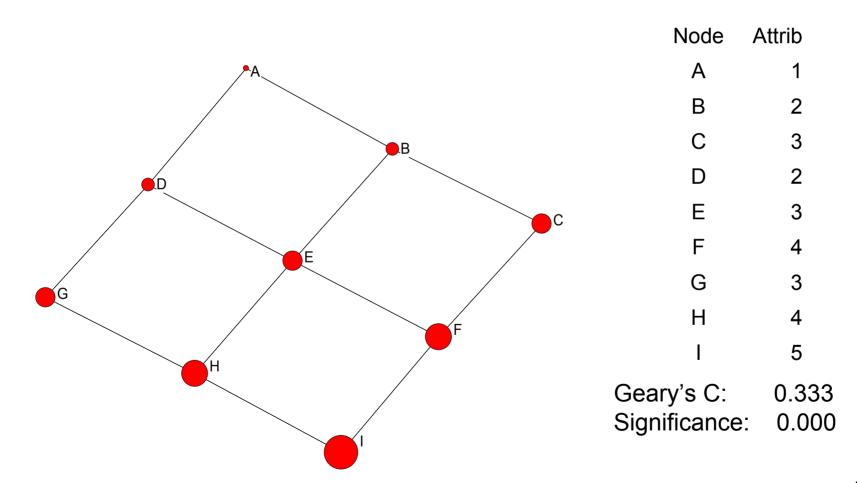
 Let Wij > 0 indicate adjacency of nodes i and j, and Xi indicate the score of node i on attribute X (e.g., age)

$$C = (n-1) \frac{\sum_{i} \sum_{j} w_{ij} (x_i - x_j)^2}{2\sum_{i,j} w_{ij} \sum_{i} (x_i - \overline{x})^2}$$

- Range of values: 0 <= C <= 2
 - C=1 indicates independence;
 - C > 1 indicates negative autocorrelation;
 - C < 1 indicates positive autocorrelation (homophily)

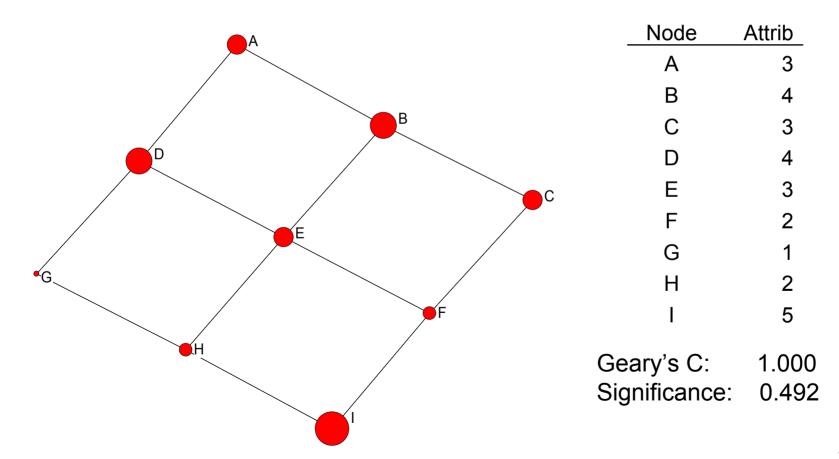
Positive Autocorrelation

(Similars adjacent; Geary's C < 1)



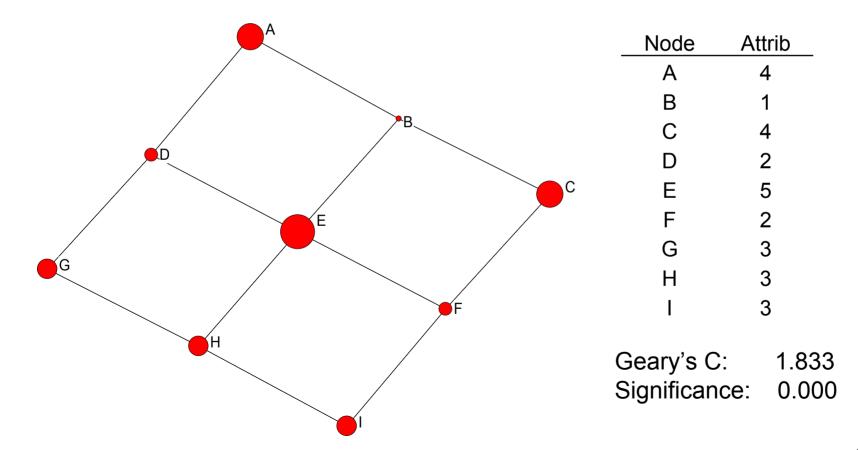
No Autocorrelation

Random pattern; (Geary's C = 1)



Negative Autocorrelation

(Dissimilars adjacent; Geary's C > 1)



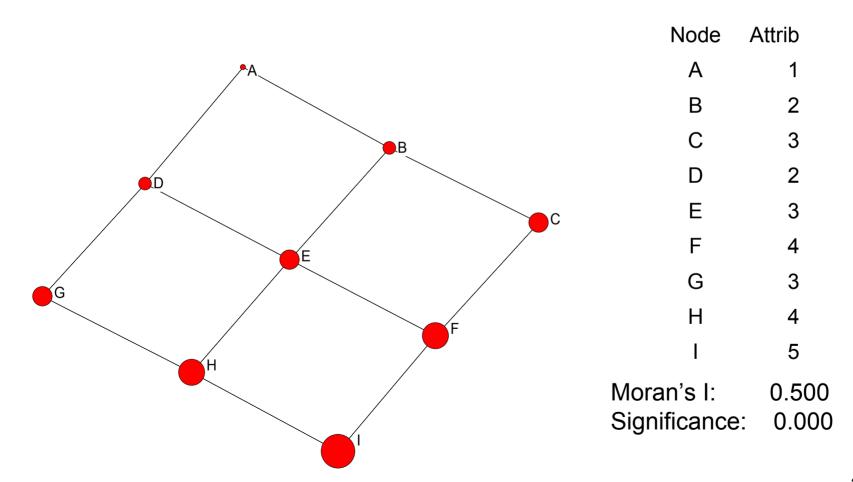
Moran's I

- Ranges between -1 and +1
- Expected value under independence is -1/(n-1)
- $I \rightarrow +1$ when positive autocorrelation
- I \rightarrow -1 when negative autocorrelation

$$I = n \frac{\sum_{i,j} w_{ij} (x_i - \overline{x}) (x_j - \overline{x})}{\sum_{i,j} w_{ij} \sum_i (x_i - \overline{x})^2}$$

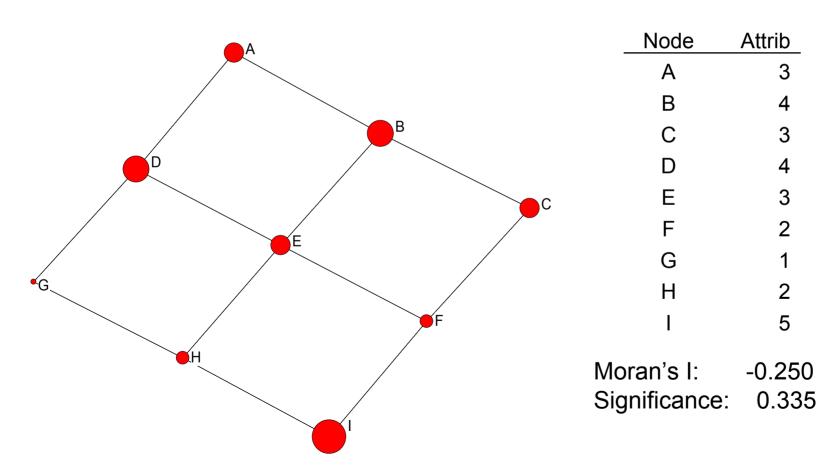
Positive Autocorrelation

(Similars adjacent; Moran's I > -0.125)



No Autocorrelation

Independence; (Moran's I \approx -0.125)



Negative Autocorrelation

(Dissimilars adjacent; Moran's I < -0.125)

