
Cohesion

Dyadic and Whole Network



Dyadic vs Whole Network

• Dyadic cohesion refers to pairwise social 
closeness

• Whole network measures can be
– Averages of dyadic cohesion
– Measures not easily reducible to dyadic 

measures



Measures of Group Cohesion
• Density & Average degree
• Average Distance and Diameter
• Number of components
• Fragmentation
• Distance-weighted Fragmentation
• Cliques per node
• Connectivity
• Centralization
• Core/Peripheriness
• Transitivity (clustering coefficient)



Density
• Number of ties, expressed as percentage of the number 

of ordered/unordered pairs

Low Density (25%)
Avg. Dist. = 2.27

High Density (39%)
Avg. Dist. = 1.76



Help With the Rice Harvest

Data from Entwistle et al

Village 1



Help With the Rice Harvest

Which 
village 
is more 
likely to 
survive?

Village 2
Data from Entwistle et al



Average Degree
• Average number of 

links per person
• Is same as 

density*(n-1), where n 
is size of network
– Density is just 

normalized avg degree 
– divide by max 
possible

• Often more intuitive 
than density
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Density 0.14
Avg Deg  4

Density 0.47
Avg Deg  4



Average Distance

• Average geodesic distance between all 
pairs of nodes

avg. dist. = 1.9 avg. dist. = 2.4



Diameter

• Maximum distance

Diameter = 3 Diameter = 3



Fragmentation Measures

• Component ratio
• F measure of fragmentation
• Distance-weighted fragmentation DF



I1

I3

W1
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W4

W5
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W9

S1

S2

S4

• No. of components divided by number of 
nodes

Component ratio = 3/14 = 0.21

Component Ratio



F Measure of Fragmentation

• Proportion of pairs of nodes that are 
unreachable from each other

• If all nodes reachable from all others (i.e., one 
component), then F = 0

• If graph is all isolates, then F = 1

rij = 1 if node i can reach node j by a path of any length
rij = 0 otherwise
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Computation Formula for F 
Measure

• No ties across components, and all 
reachable within components, hence can 
express in terms of size of components
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Computational Example
Games Data

I1

I3

W1

W2

W3

W4

W5

W6

W7

W8

W9

S1

S2

S4 = 14/(132*131) = F

Comp Size Sk(Sk-1)
1 1 0
2 1 0
3 12 132

14 132

0.2747



Heterogeneity/Concentration

• Sum of squared proportion of nodes falling in 
each component, where sk gives size of kth
component:

• Maximum value is 1-1/n
• Can be normalized by dividing by 1-1/n. If we 

do, we obtain the F measure
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Heterogeneity Example

Comp Size Prop Prop^2
1 1 0.0714 0.0051
2 1 0.0714 0.0051
3 12 0.8571 0.7347

14 1.0000 0.7449

Games Data

I1

I3

W1

W2

W3

W4

W5

W6

W7

W8

W9

S1

S2

S4

Heterogeneity = 0.255



Distance-Weighted Fragmentation

• Use average of the reciprocal of distance
– letting 1/∞ = 0

• Bounds
– lower bound of 0 when every pair is adjacent to every 

other (entire network is a clique)
– upper bound of 1 when graph is all isolates
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Connectivity

• Line connectivity λ is 
the minimum number 
of lines that must be 
removed to discon-
nect network

• Node connectivity κ is 
minimum number of 
nodes that must be 
removed to discon-
nect network

S
T



Core/Periphery Structures

• Does the network consist 
of a single group (a core) 
together with hangers-on 
(a periphery), or 

• are there multiple sub-
groups, each with their 
own peripheries?

C/P struct.

Clique 
struct.



Kinds of CP/Models

• Partitions vs. subgraphs
– just as in cohesive subgroups

• Discrete vs. continuous
– classes, or
– coreness



A Core/Periphery Structure



Blocked/Permuted
Adjacency Matrix

C O R E P E R I P H E R Y

C O R E

 -   1   1   1
 1   -   1   1
 1   1   -   1
 1   1   1   -

  1   0   0   1   0   0
  0   1   1   0   0   0
  0   0   0   1   1   0
  1   0   0   0   0   1

P E R I P H E R Y

 1   0   0   1
 0   1   0   0
 0   1   0   0
 1   0   1   0
 0   0   1   0
 0   0   0   1

  -   0   0   0   0   0
  0   -   0   0   0   0
  0   0   -   0   0   0
  0   0   0   -   0   0
  0   0   0   0   -   0
  0   0   0   0   0   -

• Core-core is 1-block
• Core-periphery are (imperfect) 1-blocks
• Periphery-periphery is 0-block



Idealized Blockmodel
C O R E P E R I P H E R Y

C O R E
 -   1   1   1
 1   -   1   1
 1   1   -   1
 1   1   1   -

  1   1   1   1   1   1
  1   1   1   1   1   1
  1   1   1   1   1   1
  1   1   1   1   1   1

P E R I P H E R Y

 1   1   1   1
 1   1   1   1
 1   1   1   1
 1   1   1   1
 1   1   1   1
 1   1   1   1

  -   0   0   0   0   0
  0   -   0   0   0   0
  0   0   -   0   0   0
  0   0   0   -   0   0
  0   0   0   0   -   0
  0   0   0   0   0   -
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ci = class (core or periphery) that node i is 
assigned to



Partitioning a Data Matrix

• Given a graphmatrix, we can randomly 
assign nodes to either core or periphery

• Search for partition that resembles the 
ideal



Assessing Fit to Data

aij = cell in data matrix
ci = class (core or periphery) that node i is 

assigned to

• A Pearson correlation coefficient r(A,D) is 
b tt
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Alternative Images
Core Periphery

C - 1 1 1 1 0 0 0 0 0
o 1 - 1 1 1 0 0 0 0 0
r 1 1 - 1 1 0 0 0 0 0
e 1 1 1 - 1 0 0 0 0 0

1 1 1 1 - 0 0 0 0 0

P 0 0 0 0 0 - 0 0 0 0
e 0 0 0 0 0 0 - 0 0 0
r 0 0 0 0 0 0 0 - 0 0
i 0 0 0 0 0 0 0 0 - 0

0 0 0 0 0 0 0 0 0 -



Alternative Images
Core Periphery

C - 1 1 1 1 - - - - -
o 1 - 1 1 1 - - - - -
r 1 1 - 1 1 - - - - -
e 1 1 1 - 1 - - - - -

1 1 1 1 - - - - - -

P - - - - - - 0 0 0 0
e - - - - - 0 - 0 0 0
r - - - - - 0 0 - 0 0
I - - - - - 0 0 0 - 0

- - - - - 0 0 0 0 -



Continuous Model

• Xij ~ CiCj
– Strength or probability of tie between node i 

and node j is function of product of coreness
of each

– Central players are connected to each other
– Peripheral players are connected only to core
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Figure 4. MDS of core/perip
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Group Morale

Core/Periphery-ness

Study by Jeff Johnson of a South 
Pole scientific team over 8 months

C/P structure seems to affect 
morale

CP Structures & Morale



Centralization

• Degree to which network revolves around 
a single node

Carter admin.
Year 1



Transitivity

• Proportion of triples with 3 ties as a 
proportion of triples with 2 or more ties
– Aka the clustering coefficient

T

A

B C

D
E

{C,T,E} is a 
transitive triple, 
but {B,C,D} is not. 
{A,D,T} is not 
counted at all.

cc = 12/26 = 46.15%



Dyadic Cohesion

• Adjacency
– Strength of tie

• Distance
– Length of shortest path between two nodes

• Multiplexity
– Number of ties of different relations linking 

two nodes
• Number of paths linking two nodes

Average is density



Classifying Cohesion

Cohesion

Distance
- Length of paths

Frequency
- Number of paths

Adjacency
density

connectivity
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