Cohesion

Dyadic and Whole Network

Dyadic vs Whole Network

- Dyadic cohesion refers to pairwise social closeness
- Whole network measures can be
 - Averages of dyadic cohesion
 - Measures not easily reducible to dyadic measures

Measures of Group Cohesion

- Density & Average degree
- Average Distance and Diameter
- Number of components
- Fragmentation
- Distance-weighted Fragmentation
- Cliques per node
- Connectivity
- Centralization
- Core/Peripheriness
- Transitivity (clustering coefficient)

Density

 Number of ties, expressed as percentage of the number of ordered/unordered pairs

Help With the Rice Harvest

Village 1

Help With the Rice Harvest

Which village is more likely to survive?

Village 2

Average Degree

- Average number of links per person
- Is same as density*(n-1), where n is size of network
 - Density is just normalized avg degree
 divide by max possible
- Often more intuitive than density

Average Distance

 Average geodesic distance between all pairs of nodes

avg. dist. = 2.4

Diameter

Maximum distance

Diameter = 3

Fragmentation Measures

- Component ratio
- F measure of fragmentation
- Distance-weighted fragmentation ^DF

Component Ratio

No. of components divided by number of nodes

Component ratio = 3/14 = 0.21

F Measure of Fragmentation

• Proportion of pairs of nodes that are unreachable from each other

$$F = 1 - \frac{2\sum_{i>j} r_{ij}}{n(n-1)}$$

 r_{ij} = 1 if node i can reach node j by a path of any length r_{ij} = 0 otherwise

- If all nodes reachable from all others (i.e., one component), then F = 0
- If graph is all isolates, then F = 1

Computation Formula for F Measure

 No ties across components, and all reachable within components, hence can express in terms of size of components

$$F = 1 - \frac{\sum_{k} s_k (s_k - 1)}{n(n-1)}$$

Sk = size of kth component

Computational Example

Games Data

Comp	Size	Sk(Sk-1)	
1	1	0	
2	1	0	
3	12	132	
	14	132	

0.2747 = 14/(132*131) = F

Heterogeneity/Concentration

 Sum of squared proportion of nodes falling in each component, where s_k gives size of kth component:

$$H = 1 - \sum_{k} \left(\frac{s_k}{n}\right)^2$$

- Maximum value is 1-1/n
- Can be normalized by dividing by 1-1/n. If we do, we obtain the F measure

$$F = 1 - \frac{\sum_{k} s_k (s_k - 1)}{n(n-1)}$$

Heterogeneity Example

Games Data

Comp	Size	Prop	Prop ²
1	1	0.0714	0.0051
2	1	0.0714	0.0051
3	12	0.8571	0.7347
	14	1.0000	0.7449

Heterogeneity = 0.255

Distance-Weighted Fragmentation

- Use average of the reciprocal of distance
 - letting $1/\infty = 0$

$${}^{D}F = 1 - \frac{2\sum_{i>j} \frac{1}{d_{ij}}}{n(n-1)}$$

- Bounds
 - lower bound of 0 when every pair is adjacent to every other (entire network is a clique)
 - upper bound of 1 when graph is all isolates

Connectivity

- Line connectivity λ is the minimum number of lines that must be removed to disconnect network
- Node connectivity κ is minimum number of nodes that must be removed to disconnect network

Core/Periphery Structures

- Does the network consist of a single group (a core) together with hangers-on (a periphery), or
- are there multiple subgroups, each with their own peripheries?

Kinds of CP/Models

- Partitions vs. subgraphs

 just as in cohesive subgroups
- Discrete vs. continuous
 - classes, or
 - coreness

A Core/Periphery Structure

Blocked/Permuted Adjacency Matrix

- Core-core is 1-block
- Core-periphery are (imperfect) 1-blocks
- Periphery-periphery is 0-block

Idealized Blockmodel

CORE

Ρ

PERIPHERY

-											
	_	1	1	1	1	1	1	1	1	1	
CORE	1	_	1	1	1	1	1	1	1	1	
	1	1	-	1	1	1	1	1	1	1	
	1	1	1	_	1	1	1	1	1	1	
	1	1	1	1	-	0	0	0	0	0	
	1	1	1	1	0	-	0	0	0	0	
ERIPHERY	1	1	1	1	0	0	_	0	0	0	
	1	1	1	1	0	0	0	_	0	0	
	1	1	1	1	0	0	0	0	_	0	
	1	1	1	1	0	0	0	0	0	_	

 $c_{i} = class (core or periphery) that node is assigned to <math display="block">\delta_{ij} = \begin{cases} 1 & if \quad c_{i} = C & O & R & E & o & r & c_{j} = C & O & R & E \\ 0 & o & th & e & r & w & is & e \end{cases}$

Partitioning a Data Matrix

- Given a graphmatrix, we can randomly assign nodes to either core or periphery
- Search for partition that resembles the ideal

Assessing Fit to Data

- a_{ii} = cell in data matrix
- c_i = class (core or periphery) that node *i* is assigned to

$$\delta_{ij} = \begin{cases} 1 & if \quad c_i = C & O & R & E & or \quad c_j = C & O & R & E \\ 0 & o & th & erw & is & e \end{cases}$$

$$\rho \qquad = \sum_{i,j} a_{ij} \delta_{ij}$$

A Pearson correlation coefficient r(A,D) is

Alternative Images

			Core	2		Periphery				
С	-	1	1	1	1	0	0	0	0	0
0	1	-	1	1	1	0	0	0	0	0
r	1	1	-	1	1	0	0	0	0	0
e	1	1	1	-	1	0	0	0	0	0
	1	1	1	1	-	0	0	0	0	0
Ρ	0	0	0	0	0	-	0	0	0	0
e	0	0	0	0	0	0	-	0	0	0
r	0	0	0	0	0	0	0	-	0	0
i	0	0	0	0	0	0	0	0	-	0
	0	0	0	0	0	0	0	0	0	-

Alternative Images

Core

Periphery

С	-	1	1	1	1	-	-	-	-	-
ο	1	-	1	1	1	-	-	-	-	-
r	1	1	-	1	1	-	-	-	-	-
e	1	1	1	-	1	-	-	-	-	-
	1	1	1	1	-	-	-	-	-	-
Ρ	-	-	-	-	-	-	0	0	0	0
e	-	-	-	-	-	0	-	0	0	0
r	-	-	-	-	-	0	0	-	0	0
Ι	-	-	-	-	-	0	0	0	-	0
	-	-	-	-	-	0	0	0	0	-

Continuous Model

- Xij ~ CiCj
 - Strength or probability of tie between node i and node j is function of product of coreness of each
 - Central players are connected to each other
 - Peripheral players are connected only to core

Figure 4. MDS of core/perip

CP Structures & Morale

Centralization

 Degree to which network revolves around a single node

Carter admin. Year 1

Transitivity

- Proportion of triples with 3 ties as a proportion of triples with 2 or more ties
 - Aka the clustering coefficient

{C,T,E} is a transitive triple, but {B,C,D} is not. {A,D,T} is not counted at all.

Dyadic Cohesion

Adjacency
 Strength of tie

Average is density

- Distance
 - Length of shortest path between two nodes
- Multiplexity
 - Number of ties of different relations linking two nodes
- Number of paths linking two nodes

Classifying Cohesion

