## Cohesion

## Dyadic and Whole Network

## Dyadic vs Whole Network

- Dyadic cohesion refers to pairwise social closeness
- Whole network measures can be
- Averages of dyadic cohesion
- Measures not easily reducible to dyadic measures


## Measures of Group Cohesion

- Density \& Average degree
- Average Distance and Diameter
- Number of components
- Fragmentation
- Distance-weighted Fragmentation
- Cliques per node
- Connectivity
- Centralization
- Core/Peripheriness
- Transitivity (clustering coefficient)


## Density

- Number of ties, expressed as percentage of the number of ordered/unordered pairs



## Help With the Rice Harvest



Data from Entwistle et al

## Help With the Rice Harvest



Which village is more likely to survive?

## Average Degree

- Average number of links per person
- Is same as density*(n-1), where n is size of network
- Density is just normalized avg degree - divide by max possible
- Often more intuitive than density



## Average Distance

- Average geodesic distance between all pairs of nodes

avg. dist. $=1.9$

avg. dist. $=2.4$


## Diameter

- Maximum distance


Diameter $=3$


Diameter $=3$

## Fragmentation Measures

- Component ratio
- F measure of fragmentation
- Distance-weighted fragmentation ${ }^{\text {DF }}$


## Component Ratio

- No. of components divided by number of nodes


Component ratio $=3 / 14=0.21$

## F Measure of Fragmentation

- Proportion of pairs of nodes that are unreachable from each other

$$
F=1-\frac{2 \sum_{i>j} r_{i j}}{n(n-1)}
$$

$r_{i j}=1$ if node $i$ can reach node $j$ by a path of any length
$r_{i j}=0$ otherwise

- If all nodes reachable from all others (i.e., one component), then $F=0$
- If graph is all isolates, then $F=1$


## Computation Formula for F Measure

- No ties across components, and all reachable within components, hence can express in terms of size of components

$$
F=1-\frac{\sum_{k} s_{k}\left(s_{k}-1\right)}{n(n-1)}
$$

Sk = size of kth component

# Computational Example <br> Games Data 



## Heterogeneity/Concentration

- Sum of squared proportion of nodes falling in each component, where $s_{k}$ gives size of kth component:

$$
H=1-\sum_{k}\left(\frac{s_{k}}{n}\right)^{2}
$$

- Maximum value is $1-1 / n$
- Can be normalized by dividing by $1-1 / n$. If we do, we obtain the F measure

$$
F=1-\frac{\sum_{k} s_{k}\left(s_{k}-1\right)}{n(n-1)}
$$

## Heterogeneity Example

Games Data

| Comp | Size | Prop | Prop^2 $^{\wedge}$ |
| :---: | :---: | ---: | ---: |
| 1 | 1 | 0.0714 | 0.0051 |
| 2 | 1 | 0.0714 | 0.0051 |
| 3 | 12 | 0.8571 | 0.7347 |
|  | 14 | 1.0000 | 0.7449 |



Heterogeneity $=0.255$

## Distance-Weighted Fragmentation

- Use average of the reciprocal of distance
- letting $1 / \infty=0$

$$
{ }^{D} F=1-\frac{2 \sum_{i>j} \frac{1}{d_{i j}}}{n(n-1)}
$$

- Bounds
- lower bound of 0 when every pair is adjacent to every other (entire network is a clique)
- upper bound of 1 when graph is all isolates


## Connectivity

- Line connectivity $\lambda$ is the minimum number of lines that must be removed to disconnect network
- Node connectivity K is minimum number of nodes that must be removed to disconnect network



## Core/Periphery Structures

- Does the network consist of a single group (a core) together with hangers-on (a periphery), or
- are there multiple subgroups, each with their own peripheries?



## Kinds of CP/Models

- Partitions vs. subgraphs
- just as in cohesive subgroups
- Discrete vs. continuous
- classes, or
- coreness


## A Core/Periphery Structure



# Blocked/Permuted Adjacency Matrix 



- Core-core is 1-block
- Core-periphery are (imperfect) 1-blocks
- Periphery-periphery is 0-block


## Idealized Blockmodel

CORE
PERIPHERY

PERIPHERY

| - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | - | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | - | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | - | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | - | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | - | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | - |

$c_{i}=$ class (core or periphery) that node $i$ is assigned to

$$
\delta_{i j}=\left\{\begin{array}{l}
1 \text { if } c_{i}=C O R E \text { or c }{ }_{j}=C O R E \\
0 \text { otherwise }
\end{array}\right\}
$$

## Partitioning a Data Matrix

- Given a graphmatrix, we can randomly assign nodes to either core or periphery
- Search for partition that resembles the ideal


## Assessing Fit to Data

$\mathrm{a}_{\mathrm{ij}}=$ cell in data matrix
$\mathrm{c}_{\mathrm{i}}=$ class (core or periphery) that node $i$ is assigned to

$$
\begin{aligned}
& \delta_{i j}=\left\{\begin{array}{l}
1 \text { if } c_{i}=C O R E \text { or } c_{j}=C O R E \\
0 \text { otherwise }
\end{array}\right\} \\
& \rho \quad=\sum_{i, j} a_{i j} \delta_{i j}
\end{aligned}
$$

- A Pearson correlation coefficient $r(A, D)$ is


## Alternative Images

Core
Periphery

| $C$ | - | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | - | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| $r$ | 1 | 1 | - | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| e | 1 | 1 | 1 | - | 1 | 0 | 0 | 0 | 0 | 0 |
|  | 1 | 1 | 1 | 1 | - | 0 | 0 | 0 | 0 | 0 |
| P | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 |
| e | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 |
| $r$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 |
| i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - |

## Alternative Images

Core Periphery

| $C$ | - | 1 | 1 | 1 | 1 | - | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | - | 1 | 1 | 1 | - | - | - | - | - |
| $r$ | 1 | 1 | - | 1 | 1 | - | - | - | - | - |
| $e$ | 1 | 1 | 1 | - | 1 | - | - | - | - | - |
|  | 1 | 1 | 1 | 1 | - | - | - | - | - | - |
| P | - | - | - | - | - | - | 0 | 0 | 0 | 0 |
| e | - | - | - | - | - | 0 | - | 0 | 0 | 0 |
| $r$ | - | - | - | - | - | 0 | 0 | - | 0 | 0 |
| I | - | - | - | - | - | 0 | 0 | 0 | - | 0 |
|  | - | - | - |  | - | 0 |  |  | 0 | - |

## Continuous Model

- Xij ~ CiCj
- Strength or probability of tie between node i and node $j$ is function of product of coreness of each
- Central players are connected to each other
- Peripheral players are connected only to core



## CP Structures \& Morale



## Centralization

- Degree to which network revolves around a single node


Carter admin. Year 1

## Transitivity

- Proportion of triples with 3 ties as a proportion of triples with 2 or more ties
- Aka the clustering coefficient

$$
c c=12 / 26=46.15 \%
$$

$\{C, T, E\}$ is a transitive triple, but $\{B, C, D\}$ is not. $\{A, D, T\}$ is not
counted at all.

## Dyadic Cohesion

- Adjacency $\longleftarrow$ Average is density
- Strength of tie
- Distance
- Length of shortest path between two nodes
- Multiplexity
- Number of ties of different relations linking two nodes
- Number of paths linking two nodes


## Classifying Cohesion



