

Mathematical Foundations

Steve Borgatti

Revised 7/04 in Colchester, U.K.

Graphs

- Networks represented mathematically as graphs
- A graph G(V,E) consists of ...
 - Set of nodes|vertices V representing actors
 - Set of lines|edges E representing ties
 - An edge is an unordered pair of nodes (u,v)
 - Nodes u and v adjacent if $(u,v) \in E$
 - So E is subset of set of all pairs of nodes
- Typically drawn without arrow heads

Digraphs

- Digraph D(V,E) consists of …
 - Set of nodes V
 - Set of directed arcs E
 - An arc is an ordered pair of nodes (u,v)
 - (u,v) ∈ E indicates u sends arc to v

- (u,v) \in E does not imply that (v,u) \in E
- Ties drawn with arrow heads, which can be in both directions

Directed vs undirected graphs

- Undirected relations
 - Attended meeting with
 - Communicates daily with
- Directed relations
 - Lent money to
- Logically vs empirically directed ties
 - Empirically, even undirected relations can be non-symmetric due to measurement error

Strength of Tie

- We can attach values to ties, representing quantitative attributes
 - Strength of relationship
 - Information capacity of tie
 - Rates of flow or traffic across tie
 - Distances between nodes
 - Probabilities of passing on information
 - Frequency of interaction
- Valued graphs or vigraphs

Adjacency Matrices

Friendship

Proximity Jim Jill Jen Joe 3 2 Jim 9 Jill 3 15 1 -3 9 Jen 1 2 15 3 Joe

Density

 Number of ties, expressed as percentage of the number of ordered/unordered pairs

Help With the Rice Harvest

Village 1

Help With the Rice Harvest

Which village is more likely to survive?

Village 2

Degree

Number of edges incident upon a vertex

$$- d_8 = 6$$
, while $d_{10} = 1$

- Sum of degrees of all nodes is twice the number of edges in graph
- Average degree = density times (n-1)

InDegree & OutDegree (Directed graphs only)

- Indegree is number of arcs that terminate at the node (incoming ties)
 - Indeg(biff) = 3
- <u>Outdegree</u> is number of arcs that originate at the node (outgoing ties)
 - Outdeg(biff) = 1

Average indegree always equals average outdegree

Walks, Trails, Paths

- Path: can't repeat node
 - 1-2-3-4-5-6-7-8
 - Not 7-1-2-3-7-4
- Trail: can't repeat line
 1-2-3-1-7-8
 - Not 7-1-2-7-1-4
- Walk: unrestricted - 1-2-3-1-2-7-1-7-1

Length & Distance

- Length of a path is number of links it has
- Distance between two nodes is length of shortest path (aka geodesic)

Geodesic Distance Matrix

Diameter

Maximum distance

Diameter = 3

Average Distance

 Average geodesic distance between all pairs of nodes

Core/Periphery c/p fit = 0.97, avg. dist. = 1.9 Clique structure c/p fit = 0.33, avg. dist. = 2.4

Types of Flow Processes

- Gift process
- Currency process
- Transport process
- Postal process

- Gossip process
- E-mail process
- Infection process
- Influence process

(several others)

Monetary Exchange Process

- Canonical example:
 - specific dollar bill moving through the economy
- Single object in only one place at a time
- Can travel between same pair more than once
 - A--B--C--B--C--D--E--B--C--B--C ...

Gossip Process

- Example:
 - juicy story moving through informal network
- Multiple copies exist simultaneously
- Person tells only one person at a time*
- Doesn't travel between same pair twice
- Can reach same person multiple times

* More generally, they tell a very limited number at a time.

Infection Process

- Example:
 - virus which activates effective immunological response
- Multiple copies may exist simultaneously
- Cannot revisit a node
 - A--B--C--E--D--F...

Three Kinds of Flows

Type of Flow	Type of Trajectory
Virus	Path
Gossip	Trail
Dollar bill	Walk

Components

- Maximal sets of nodes in which every node can reach every other by some path (no matter how long)
- A connected graph has just one component

It is relations (types of tie) that define different networks, not components. A graph that has two components remains one (disconnected) graph.

A network with 4 components

Who you go to so that you can say 'I ran it by _____, and she says ...'

Data drawn from Cross, Borgatti & Parker 2001.

Transitivity

- Number of triples with 3 ties expressed as a proportion of triples with 2 or more ties
 - Aka the clustering coefficient

cc = 2/6 = 33%

{C,T,E} is a transitive triple, but {B,C,D} is not

Independent Paths

- A set of paths is node-independent if they share no nodes (except beginning and end)
 - They are line-independent if they share no lines

- 2 node-independent paths from S to T
- 3 line-independent paths from S to T

Connectivity

- Line connectivity

 λ(s,t) is the minimum
 number of lines that
 must be removed to
 disconnect s from t
- Node connectivity

 κ(s,t) is minimum
 number of nodes that
 must be removed to
 disconnect s from t

Menger's Theorem

- Menger proved that the number of line independent paths between s and t equals the line connectivity λ(s,t)
- And the number of node-independent paths between s and t equals the node connectivity κ(u,v)

Maximum Flow

- If ties are pipes with capacity of 1 unit of flow, what is the maximum # of units that can flow from s to t?
- Ford & Fulkerson show this was equal to the number of line-independent paths

Cutpoint

• A node which, if deleted, would increase the number of components

Local Bridge of Degree K

• A tie that connects nodes that would otherwise be at least *k* steps apart

Granovetter Transitivity

Granovetter's SWT Theory

- Strong ties create transitivity
 - Two nodes connected by a strong tie will have mutual acquaintances (ties to same 3rd parties)
- Ties that are part of transitive triples cannot be bridges or local bridges
- Therefore, only weak ties can be bridges
 Hence the value of weak ties

Granovetter's SWT

- Strong ties are embedded in tight homophilous clusters,
- Weak ties connect to diversity
- Weak ties a source of novel information