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Units of Analysis

« Dyadic (tie-level)
— The raw data
— Cases are pairs of actors

— Variables are attributes of the relationship among pairs (e.g., strength of
friendship; whether give advice to; hates)

— Each variable is an actor-by-actor matrix of values, one for each pair
« Monadic (actor-level)
— Cases are actors

— Variables are aggregations that count number of ties a node has, or
sum of distances to others (e.g., centrality)

— Each variable is a vector of values, one for each actor

« Network (group-level)
— Cases are whole groups of actors along with ties among them

— Variables aggregations that count such things as number of ties in the
network, average distance, extent of centralization, average centrality

— Each variable has one value per network



Types of Hypotheses

Dyadic (multiplexity)
— Friendship ties lead to business ties

— Social ties between leads to less formal contractual ties
(embeddedness)

Monadic
— Actors with more ties are more successful (social capital)

Network

— Teams with greater density of communication ties perform better
(group social capital)

Mixed Dyadic-Monadic (autocorrelation)

— People prefer to make friends (dyad level) with people of the
same gender (actor level) (homophily)

— Friends influence each other’s opinions



Statistical Issues

Samples non-random

Often work with populations
Observations not independent
Distributions unknown



Solutions

* Non-independence

— Model the non-independence explicitly as in
HLM

« Assumes you know all sources of dependence
— Permutation tests

* Non-random samples/populations
— Permutation tests



Logic of Permutation Test

« Compute test statistic
— e.g., correlation or difference in means

— Correlation between centrality and salary is 0.384 or difference
in mean centrality between the boys and the girls is 4.95.

— Ask what are the chances of getting such a large correlation or
such a large difference in means if the variables are actually
completely independent?

« Wait! If the variables are independent, why would the
correlation or difference in means be anything but zero?

— Sampling

— “Combinatorial chance”: if you flip coin 10 times, you expect 5

heads and 5 tails, but what you actually get could be quite
different



Logic of Permutation Test

 So to evaluate an observed correlation between two
variables of 0.384, we want to

— correlate thousands of variables similar to the ones we are
testing that we know are truly independent of each other, and

— see how often these independent variables are correlated at a
level as large as 0.384

» The proportion of random correlations as large observed value is
the p-value of the test

* How to obtain thousands of independent variables
whose values are assigned independently of each other?
— Fill them with random values
» But need to match distribution of values
— Permute values of one with respect to the other



Outline of Permutation Test

 Get observed test statistic

» Construct a distribution of test statistics
under null hypothesis
— Thousands of permutations of actual data

* Count proportion of statistics on permuted
data that are as large as the observed
— This is the p-value of the test



Monadic Hypotheses
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Dyadic Hypotheses

* Hubert / Mantel QAP test Friendship
— All variables are actor-by- Jim Jill Jen Joe
actor matrices Jim{ - [1] 0| 1
— We use one relation Jihl1]1-111]0
(dyadic variable) to predict Jenl 0 111 - | 1
another
Joe| 1 |0 | 1 -
— Test statisticis ) = ZZXUJ/U
— Significance is i Proximity
prop(y =2 y"), ~ Jim Jil Jen Joe
Jim|f - [3] 9| 2
= 2. 2. %Y ponti Ji] 3 1-11 115
i Jen| 9 | 1] - | 3
: J 2 |15 3 | -
QAP correlation & MR- o°

QAP multiple regression



Dyadic/Monadic Hypotheses

One dyadic (relational) variable, one monadic
(actor attribute) variable

— Technically known as autocorrelation

Diffusion

— adjacency leads to similarity in actor attribute
« Spread of information; diseases

Selection

— similarity leads to adjacency
« Homophily: birds of feather flocking together
» Heterophily: disassortative mating

Tom Snijders’ SIENA model
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Categorical Autocorrelation

Nodes partitioned into mutually exclusive
categories, e.g., gender or race

We expect more ties within group than between
— Boys interact w/ boys, girls w/ girls

Count up number of ties between all ordered
pairs of groups:

— boys to boys, boys to girls, girls to boys, girls to girls
Compare with number expected given

iIndependence of interaction and node
characteristic

— i.e., if people choose partners without regard for
gender
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Campnet Example

Female
Male
Female Male
Female 1.87| 038 Female
Male 038| 155 Male

Observed
Female Male
12 7

7 16
Expected
Female Male
6.4 18.3
18.3 10.3
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Density Table

1 2
Femal Male

1 Fem 0.429 0.087
2 Mal 0.087 0.356

MODEL FIT

REGRESSION COEFFICIENTS

Un-stdized Stdized Proportion Proportion

Independent Coefficient Coefficient Significance As Large As Small
Intercept 0.087500 0.000000 1.000 1.000 0.001
Group 1 0.341071 0.313982 0.001 0.001 0.999

Group 2 0.268056 0.290782 0.001 0.001 0.999 14



Continuous Autocorrelation

« Each node has score on continuous
variable, such as age or rank

* Positive autocorrelation exists when nodes
of similar age tend to be adjacent
— Friendships tend to be homophilous wrt age
— Mentoring tends to be heterophilous wrt age

« Can measure similarity via difference or
product
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Geary's C

Let Wij > 0 indicate adjacency of nodes i and j, and Xi
indicate the score of node i on attribute X (e.g., age)

ZZ (x,.—xj)z
Z Z(xi_)_c)z

C=(n-1)-

Range of values: 0 <=C <=2

— C=1 indicates independence;

— C > 1 indicates negative autocorrelation;

— C < 1 indicates positive autocorrelation (homophily)
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Positive Autocorrelation

(Similars adjacent; Geary’s C < 1)

Node
A
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0.333
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No Autocorrelation

Random pattern; (Geary’'s C = 1)

Node Attrib

A 3

B 4

C 3

D 4

E 3

F 2

G 1

H 2

I 5
Geary’s C: 1.000
Significance: 0.492
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Negative Autocorrelation

(Dissimilars adjacent; Geary’s C > 1)
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19



Moran’s |

Ranges between -1 and +1

Expected value under independence is
-1/(n-1)

| 2 +1 when positive autocorrelation
| 2 -1 when negative autocorrelation

ng(xi _f)('xj _)?)
[=n-’ :
ZWijZ(xi _f)
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Positive Autocorrelation

(Similars adjacent; Moran’s | > -0.125)

Node
A
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Significance:
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No Autocorrelation

Independence; (Moran’s | =-0.125)

Node Attrib

A 3

B 4

C 3

D 4

E 3

F 2

G 1

H 2

I 5
Moran’s |: -0.250
Significance: 0.335
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Negative Autocorrelation

(Dissimilars adjacent; Moran’s | <-0.125)

Node Attrib

A 4

B 1

C 4

D 2

E )

F 2

G 3

H 3

I 3
Moran’s |: -0.875
Significance: 0.000
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