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– Applications
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– Anthropac
– UCINET/NetDraw



History
• Became popular in the 60s

– In part because of availability of Bell Labs Fortran 
programs

• Linguistic anthropology à cognitive 
anthropology à marketing research

• Scientific, yet emic
– From distinction between phonemic and phonetic
– Describing & modeling the native’s point of view

• Models themselves remain in researcher’s world
• It is the objective that makes it emic, not the result

– Informant ethnographies is yet another class of work



Underlying Notions
• Cognition organized around categories 

(domains)
– Typically named, shared
– Examples:  illnesses, vegetables, countries

• Categories contain items
– Some may be categories themselves

• tree structure

• Items in semantic relations w/ each other
– Part/whole, similar to, causes

• Items distinguished by attributes or features
– What are the differences that make difference?



Componential analysis
of horse terms

• Features
– Stallion ß horse+male+adult
– Mare ß horse+female+adult
– Gelding ß horse+neuter+adult|adolescent
– Filly ß horse+female+adolescent
– Colt ß horse+male|female+child
– Foal ß horse+male|female+baby

• Paradigm
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Typical CDA Study
• Eliciting domain
• Eliciting items within a domain
• Analyzing structure of the domain

– Semantic relations
– Uncovering the meaningful attributes

• Analyzing structure of agreement among 
respondents

• Prediction
– [People react similarly to similar things]



Elicitation  & Measurement
• Domain membership

– Free listing
• Measuring Similarities

– Pile sorts, Triads, Direct rating, Map drawing
• Attributes

– Eliciting:
• Pile sort labeling
• Interpreting MDS maps of similarities

– Measurement:
• Paired comparisons
• Direct rating



Analysis Techniques
• Multidimensional scaling (MDS)

– Of aggregate similarity data
• Cluster analysis

– Of aggregate similarity data
• Property Fitting

– Relating attributes to similarity data
• Consensus Analysis

– Understanding variations in beliefs



Free Listing
• Basic idea:

– Tell me all the <category name> you can think of
– Typically loosely timed, no questions allowed
– An example of Spradley’s “grand tour” question

• Contrasts with survey open-ended question
– Open-end is typically about the respondent: 

• what do you like about this product? what ice-cream 
flavors do you like? what illnesses have you had?

– Free list is about the domain: 
• what ice-cream flavors are there? what illnesses exist?



Domain of Fruits

Weller & Romney. 1988. 
Systematic Data Collection. Sage.



Domain of Vegetables

Weller & Romney. 1988. 
Systematic Data Collection. Sage.



The “Bad Words” Domain
WARNING: 

4-Letter words follow!
The squeamish and the moral should go back to work now!



Frequencies
• Sort in descending order
• Tally average position in lists
• Combine frequency and position to create 

salience measure
• May need editing to standardize spelling
• In some cases, want to collapse synonyms

– Not in linguistics projects, though



Domain borders are fuzzy
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Domains have core/periphery 
structure

• MDS of item-item 
co-occurrences

• Each dot is a bad 
word

• Core items are in the 
center – in 
everybody’s list – and 
co-occur with each 
other
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Core items typically mentioned first

Frequency vs Rank

y = -0.0767x + 12.142

R2 = 0.2393
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Use scree plot to select core
FREQUENCY
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Can analyze respondents as well
• Length of lists
• Conventionality of their lists (do they tend to 

list more popular items)
• Correlation between rank (position on list) and 

sample frequency
• Similarities (overlaps) in people’s lists



Things to notice …
• Boundaries of a domain are fuzzy

– Not just artifact of aggregation
– For additional data collection, need inclusion rules

• Simple, established cultural domains have 
– Core/periphery structure
– Core items recalled first
– Consensus among respondents: 

• Each list has core items + idiosyncratic
• We don’t see clusters

• Quantitative analysis of qualitative data



Animals Domain
• Please grab a piece of paper and something to 

write with
• When I say ‘go’, please write down all the 

animals you can think of. You will have two 
minutes



Things to notice …
• Ordering of items encodes … 

– sub-category membership
– Semantic relations such as similarity (lions & 

tigers) complementarity (forks & knives)
• Can reproduce map of domain from free lists



Causes of Breast Cancer
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Things to notice …
• Comparative analysis is particularly powerful
• Correspondence analysis

– is clearly quantitative
• Singular value decomposition of frequency matrix 

adjusted for row and column marginals
– So we have quantitative analysis of qualitative data
– On the other hand, the result is a picture – what 

can be more qualitative than that?



Uses of Free List
• First step in mapping the domain

– i.e., getting a list of items to work with
• Analysis of the list itself

– What makes something a fruit? A bad word?
– Comparing salience of items for different groups
– Examining similarities among respondents

• Who lists the same items
– Examining similarities among items

• Which items tend to mentioned by the same respondents?

• Obtaining native terminology



Pile Sort Technique
• Basic idea:

– On each of these cards is written the name of a 
thing. Please sort the cards into piles according to 
how similar they are. You can use as many or as few 
piles as you like.

• Outcome is quantitative measure of similarity 
among all pairs of items
– For each pair of items, count the proportion of 

respondents who put them in the same pile
• Respondents only asked for non-quantitative 

judgments



Aggregate Proximity Matrix
• Item by item matrix gives the percent of 

respondents placing the two items in the same 
pile

• Typically visualize with MDS and cluster 
analysis



Triads
• Basic idea:

– Present items to respondent 3 at a time, and ask which is 
most different

• To elicit attributes
– ask why they chose as they did, then try other triples

• To measure similarity
– Systematically present all possible triples*
– Each time an item is chosen most different it is a vote for 

the similarity of the other two
– Arrange as an aggregate similarity matrix

dogsealshark

* Or use clever balanced incomplete block design



BIBDs
• Number of triples rises fast as items increase

– n(n-1)(n-2)/6
– For 30 items, have 4,060 triads to fill out …

• Each pair of items occurs n-2 times. 
– Let lambda stand for number of occurrences

• Balanced incomplete block design has each 
pair occurring same number of times, but 
lambda < n-2
– Lambda-1 design: each pair occurs just once



Representing Proximities
• Multidimensional scaling (MDS)

– Maps items to points in Euclidean space such that 
points corresponding to more similar items are 
placed nearer to each other in the space

• Cluster analysis
• Network analysis techniques



MDS of animals domain
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MDS of land animals only



Fruits & Vegetables



Things people are scared of
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Things to notice …
• Can use MDS with any proximity matrix

– Aggregate similarities, Direct ratings, Confusion 
matrices, Correlation matrices, etc. 

• Typically use 1-3 dimensions (mostly 2)
• Measure of fit (stress)
• Simplifies complex data
• Interpretation centers on

– Looking for dimensions (quantitative item 
attributes)

– Looking for clusters (qualitative item attributes)



Holidays
• Demo of Visual Anthropac pre-release version



Network analysis
• Crimes dataset
• Animals
• Holidays



Things people are scared of

BEING_ALONE

BUGS

CHANGECOMMITMENT

DEATH

DENTISTS

DISEASE

DOCTORS
DOGS

DROWNING

ENCLOSED_SPACE

FAILURE
FINANCIAL_TROUBLE

FIRE

FLYING

GHOSTS

GROWING_OLD

GUNS

HEIGHTS

LIGHTNING

LOSING_A_LOVED_ONE

PUBLIC_SPEAKING

RAPE

RATS

SCARY_MOVIES

SHARKS

SICKNESS

SNAKES

SPIDERS

TESTSTHE_DARK

THUNDER

WATER

Female respondents



Things people are scared of
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Discrepancy Analysis

Romney, Moore, Batchelder and Hsia. 2002. Statistical methods … PNAS 97(1): 518-523

* English
• Japanese



MDS of similarities 
in respondents’ sorts

* English
• Japanese



Emotion Terms
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Crimes
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Occupations



Property Fitting (PROFIT)
• Testing hypotheses about dimensions in mds

maps
– Were respondents influenced by this dimension 

when they did the pile sorts or triads?
• Ask sample of respondents to rate each item 

on this dimension
• Aggregate across all respondents
• Regress average score on map coordinates

– Prestige = b1*X_coordinate + b2*Y_coordinate
• Calculate vector angles from regression coefs



Personality
Traits



PROFIT
• The cases in the regression are items
• The dependent variable is the average rating of each 

item on the hypothesized attribute
• Look for significant r-square > 0.80
• If r-square is low, then we can discredit an attribute 

as being a factor in people’s judgments
• If r-square is high, then they may have been using 

this attribute (or a highly correlated one) in their 
thinking

• Can also use un-averaged ratings: a different rating 
vector for each respondent



Contagiousness (US)



Severity (US)



Contagion (Guatemala)



Severity (Guatemala)



Age of the Infirm (Guatemala)



Hot-Cold (Guatemala)



Consensus Analysis
• Is it ok to aggregate across respondents?

– Only if they belong to same culture – averaging 
systematically different sets of answers just gets 
mush

– Similar to interpreting average of a bi-modal 
univariate distribution

• Can we tell which respondents know what they 
are talking about (or have conventional views) 
and which don’t (are out in left field)?

• Consensus theory of Romney, Weller & 
Batchelder can help



Response model
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Prob of agreement, mij

Case Probability 

1. Both know answer didj 

2. I knows and J guesses right di(1-dj)/L 

3. J knows and I guesses right dj(1-di)/L 

4. Neither knows, both guess the     
same 

(1-di)(1-dj)/L 
 

 

(between respondents I and J)



Neither Knows, Guess Same
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Pairwise agreement mij

• Agreement mij is sum of four cases:

mij = didj + di(1-dj)/L + dj(1-di)/L + (1-di)(1-dj)/L
mij = didj + (1-didj)/L

• Or rearrange terms:

(Lmij-1)/(L-1) = didj

• Agreement between respondents is a multiplicative 
function of knowledge level of each



Factor Analysis

• Left side of (Lmij-1)/(L-1) = didj is just obs
agreement adjusted by constants. If we let m*ij
= (Lmij-1)/(L-1) then we can write more simply:
m*ij = didj

• We solve for d’s by factor analyzing M*
– Spearman’s fundamental equation of factor analysis 

rij = fifj
• Corr between two variables is a function of the extent each 

is correlated with the latent factor

observed unknown



We can figure out how 
much people know without 

having an answer key 
!!!!!!!!!!!!



Inferring knowledge

• Factoring the observed agreement matrix M* solves 
for the unknown values di
– The d values given by the factor loadings

• The d values are the amount of knowledge each 
person has
– Literally, the correlation of the person’s responses with the 

unknown answer key
• So factoring the agreement matrix gets us exact 

estimates of the amount of knowledge each person 
has
– And no answer key is needed!!! 
– Exactly what we were looking for



What’s the catch??
• The response model must be right

• Can characterize this model as follows

Qj
Know
Answer?

Yes:
write
it down

No:
guess

Right
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Right
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Wrong
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Three conditions
• Common Truth

– each question has exactly one right answer, 
applicable to entire sample of respondents

• Sample drawn from one pop w/ same answer key

• Local Independence
– resp-item response variables xij are independent, 

conditional on the truth
• One Domain

– All questions drawn from same domain, i.e.:
• can model knowledge w/ one parameter, di



Bullseye Model
• Two people agree to the extent that each is 

correlated with the truth
– Truth is culturally correct answer key

• Each member of culture is aiming at 
same answer key
– but missing to varying degrees in idiosyncratic ways

• Different org 
cultures have
different 
targets

Answer key
for culture 1

Answer key
for culture 2



Expected Agreement Pattern
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Partitioning variability
• Model identifies two sources of variability in 

responses (beliefs)
– Cultural: multiple answer keys
– Individual: variation in knowledge

• Within each culture, we still expect (and can 
measure), variability due to differential 
access to information, ability, etc. 



Test of consensus model
• Undergraduate class with 92 students
• Multiple choice final exam with 50 questions
• Instructor’s answer key provides gold 

standard to compare against 
• Each student asked to guess test score of all 

acquaintances, including self



Measures
• Self-report model

– Each person’s estimate of their own score
• Network model

– for each person, use average estimate of their scores (persons with 
fewer than 5 acquaintances were excluded)

• All acquaintances
• Only friends

• Consensus model
– Factor loadings of minimum residual factor analysis of student-by-

student agreement matrix
• Gold standard

– % correct based on instructor’s answer key



Factor Analysis of Agreements

• Results consistent w/ single answer key
– therefore we can use loadings to estimate 

knowledge
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Correlations
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1.0000.8910.5560.398Friends

1.0000.5640.334Acquaint

1.0000.479Self

1.000Gold
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• Consensus estimates virtually identical to gold 
standard (r = 0.947)

• Self-report better than network model



Running Consensus



Summary
• CDA is about mapping structure of emic

domains
• Data collection relies on text statements or 

simple categorical judgments
– Listing terms
– Piling, choosing most different, choosing greater 

of two items
• Analysis uses sophisticated computational 

techniques but mostly delivers pictures


