Cohesion

Relational and Group

Relational vs Group

- Relational or dyadic cohesion refers to pairwise social closeness
- Network cohesion refers to the cohesion of an entire group

Ways to Approach This

- Many ways to define or theoretically conceive of cohesion
 - cohesion \rightarrow outcome
 - What is the mechanism that would relate cohesion to the outcome of interest?
 - Define cohesion consistent with this mechanism
- For each way, we can then devise an operational measurement
 - Don't confuse the measure with the construct

Adjacency & Strength of Tie

- Raw dyadic data
- Positive ties
- Guttman scale of social closeness or obligation
- Valued relations
 - Frequency of interaction
 - Duration of relation
 - Intensity

Multiplexity

- Multiplexity is often what is meant by "relational embeddedness"
 - As in economic ties being embedded in social ties
- Combination of (the right set of) ties can be seen as yielding greater closeness than just one tie

Embedded Ties

- A tie (u,v) is structurally embedded if there exists node p (possibly several nodes) such that (u,p) ∈ E and (v,p) ∈ E
 - I.e, then endpoints u and v have "friends" in common

Simmelian Ties

- Krackhardt's definition:
- A dyad has a simmelian tie if it is reciprocal ties to each other and to third parties
- The value of a simmelian tie is the number of third parties they have in common
 - Ideally, it is the number of cliques they have in common

Reachability

- If there exists a path from u to v of any length, then v is said to be reachable from u
- The reachability matrix R in which rij = 1 if I can reach j records the relational cohesions in the graph
- Is a weak form of cohesion minimal in fact
- Can define a weak form of Simmelian ties on the reachability graph

Geodesic Distance

Adjacency	Geodesic Distance
abcdefghij	abcdefghij
a 0 1 1 1 0 0 0 0 0 0	a 0 1 1 1 2 3 4 5 4 5
b 1 0 1 0 1 0 0 0 0 0	b 1 0 1 2 1 2 3 4 3 4
c 1 1 0 1 0 0 0 0 0 0	c 1 1 0 1 2 3 4 5 4 5
d 1 0 1 0 1 0 0 0 0 0	d 1 2 1 0 1 2 3 4 3 4
e 0 1 0 1 0 1 0 0 0 0	e 2 1 2 1 0 1 2 3 2 3
f 0 0 0 0 1 0 1 0 1 0	f 3 2 3 2 1 0 1 2 1 2
g 0 0 0 0 0 1 0 1 0 1	g 4 3 4 3 2 1 0 1 2 1
h 0 0 0 0 0 0 1 0 1 1	h 5 4 5 4 3 2 1 0 1 1
i 0 0 0 0 0 1 0 1 0 1	i 4 3 4 3 2 1 2 1 0 1
j 0 0 0 0 0 0 1 1 1 0	j 5 4 5 4 3 2 1 1 1 0

More nuance in the representation of non-connection

Reciprocal Distance

	а	b	С	d	е	f	g	h	i	j
а	0.00	1.00	1.00	1.00	0.50	0.33	0.25	0.20	0.25	0.20
b	1.00	0.00	1.00	0.50	1.00	0.50	0.33	0.25	0.33	0.25
С	1.00	1.00	0.00	1.00	0.50	0.33	0.25	0.20	0.25	0.20
d	1.00	0.50	1.00	0.00	1.00	0.50	0.33	0.25	0.33	0.25
е	0.50	1.00	0.50	1.00	0.00	1.00	0.50	0.33	0.50	0.33
f	0.33	0.50	0.33	0.50	1.00	0.00	1.00	0.50	1.00	0.50
g	0.25	0.33	0.25	0.33	0.50	1.00	0.00	1.00	0.50	1.00
h	0.20	0.25	0.20	0.25	0.33	0.50	1.00	0.00	1.00	1.00
i	0.25	0.33	0.25	0.33	0.50	1.00	0.50	1.00	0.00	1.00
j	0.20	0.25	0.20	0.25	0.33	0.50	1.00	1.00	1.00	0.00

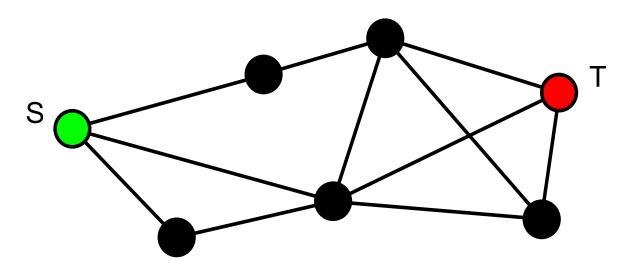
Number of Walks*

		1	2	3	4	5	6	7	8	9	10
		a	b	С	d	е	f	g	h	i	j
1	а	194	167	195	167	154	50	30	12	30	12
2	b	167	188	167	188	115	82	22	30	22	30
3	С	195	167	194	167	154	50	30	12	30	12
4	d	167	188	167	188	115	82	22	30	22	30
5	е	154	115	154	115	150	59	82	50	82	50
6	f	50	82	50	82	59	150	115	154	115	154
7	g	30	22	30	22	82	115	188	167	188	167
8	h	12	30	12	30	50	154	167	194	167	195
9	i	30	22	30	22	82	115	188	167	188	167
10	j	12	30	12	30	50	154	167	195	167	194

*Of length of length 6 or less

Independent Paths

- A set of paths is node-independent if they share no nodes (except beginning and end)
 - They are line-independent if they share no lines



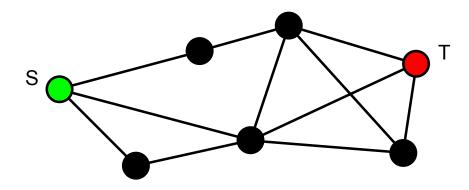
- 2 node-independent paths from S to T
- 3 line-independent paths from S to T

Connectivity

- Line connectivity

 λ(s,t) is the minimum
 number of lines that
 must be removed to
 disconnect s from t
- Node connectivity

 κ(s,t) is minimum
 number of nodes that
 must be removed to
 disconnect s from t

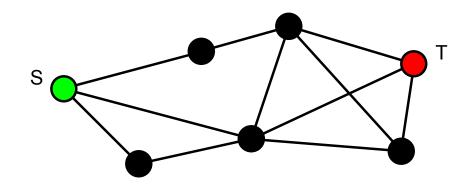


Menger's Theorem

- Menger proved that the number of line independent paths between s and t equals the line connectivity λ(s,t)
- And the number of node-independent paths between s and t equals the node connectivity κ(u,v)

Maximum Flow

- If ties are pipes with capacity of 1 unit of flow, what is the maximum # of units that can flow from s to t?
- Ford & Fulkerson show this was equal to the number of line-independent paths



Group Cohesion

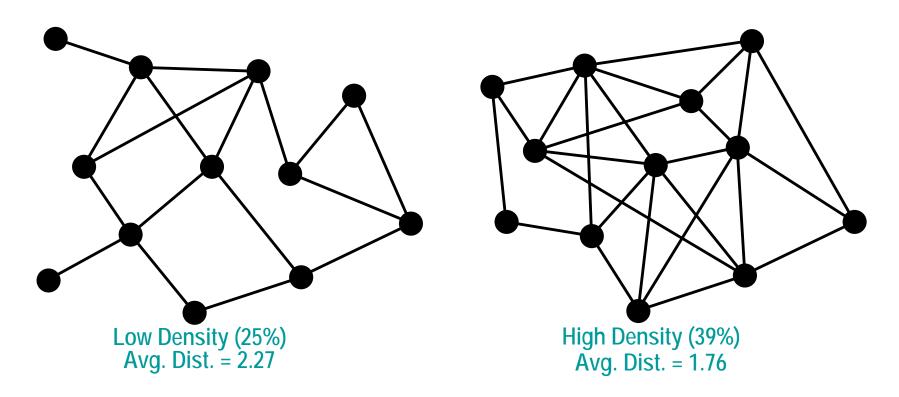
- Whole network measures can be
 - Averages of dyadic cohesion
 - Measures not easily reducible to dyadic measures

Measures of Group Cohesion

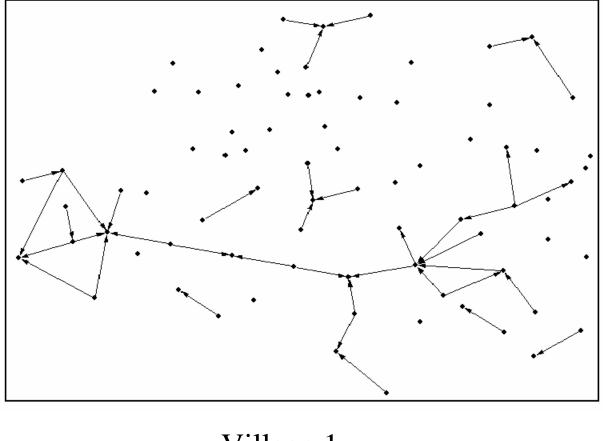
- Density & Average degree
- Average Distance and Diameter
- Number of components
- Fragmentation
- Distance-weighted Fragmentation
- Cliques per node
- Connectivity
- Centralization
- Core/Peripheriness
- Transitivity (clustering coefficient)

Density

 Number of ties, expressed as percentage of the number of ordered/unordered pairs



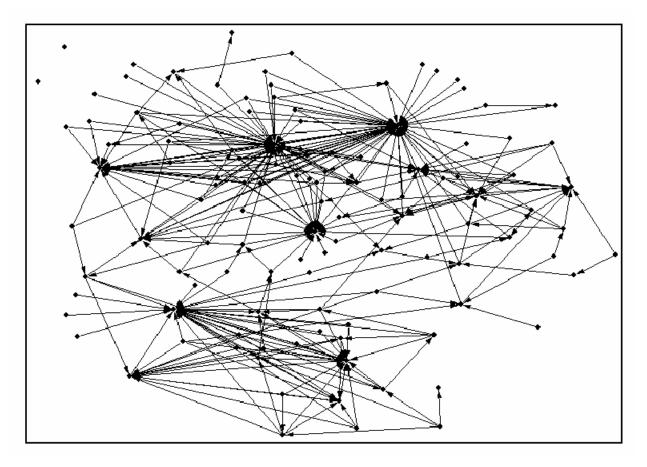
Help With the Rice Harvest



Village 1

Data from Entwistle et al

Help With the Rice Harvest



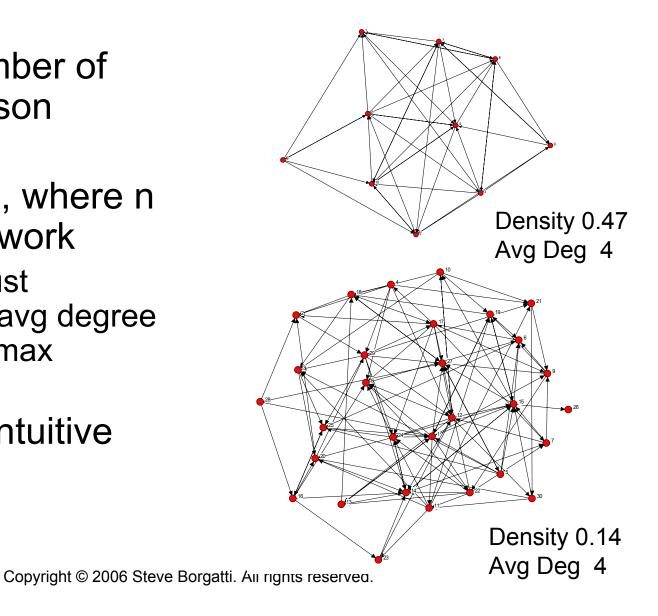
Which village is more likely to survive?

Village 2

Data from Entwistle et al

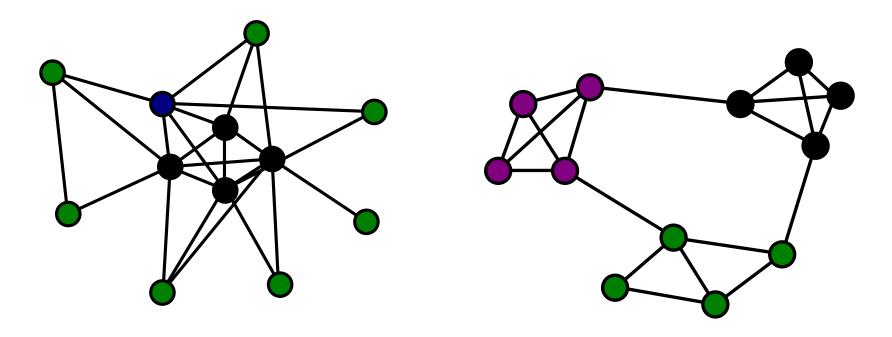
Average Degree

- Average number of links per person
- Is same as density*(n-1), where n is size of network
 - Density is just normalized avg degree
 divide by max possible
- Often more intuitive than density



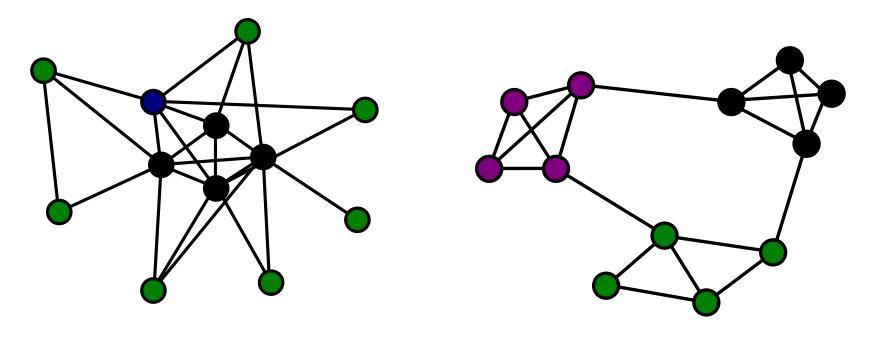
Average Distance

 Average geodesic distance between all pairs of nodes



Diameter

Maximum distance

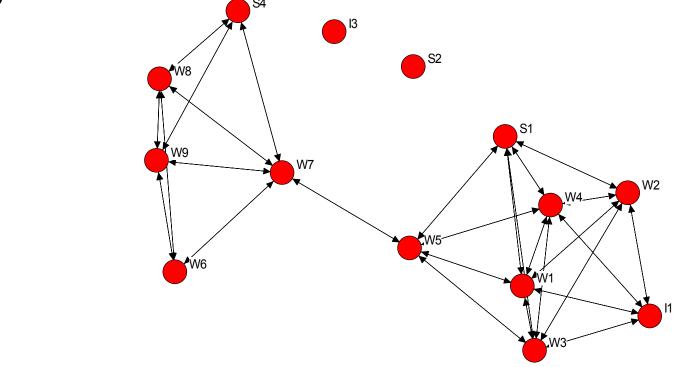


Fragmentation Measures

- Component ratio
- F measure of fragmentation
- Breadth (Distance-weighted fragmentation) B

Component Ratio

No. of components divided by number of nodes



Component ratio = 3/14 = 0.21

F Measure of Fragmentation

 Proportion of pairs of nodes that are unreachable from each other

$$F = 1 - \frac{2\sum_{i>j} r_{ij}}{n(n-1)}$$

 r_{ij} = 1 if node i can reach node j by a path of any length r_{ij} = 0 otherwise

- If all nodes reachable from all others (i.e., one component), then F = 0
- If graph is all isolates, then F = 1

Computation Formula for F Measure

 No ties across components, and all reachable within components, hence can express in terms of size of components

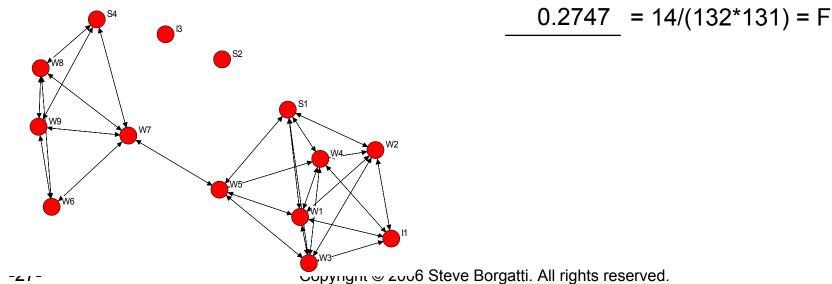
$$F = 1 - \frac{\sum_{k} s_k (s_k - 1)}{n(n-1)}$$

Sk = size of kth component

Computational Example

Games Data

Comp	Size	Sk(Sk-1)	
1	1	0	
2	1	0	
3	12	132	
	14	132	



Heterogeneity/Concentration

 Sum of squared proportion of nodes falling in each component, where s_k gives size of kth component:

$$H = 1 - \sum_{k} \left(\frac{s_k}{n}\right)^2$$

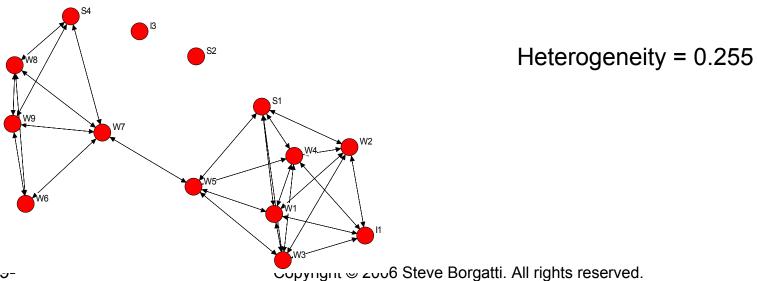
- Maximum value is 1-1/n
- Can be normalized by dividing by 1-1/n. If we do, we obtain the F measure

$$F = 1 - \frac{\sum_{k} s_k (s_k - 1)}{n(n-1)}$$

Heterogeneity Example

Games Data

Comp	Size	Prop	Prop^2
1	1	0.0714	0.0051
2	1	0.0714	0.0051
3	12	0.8571	0.7347
	14	1.0000	0.7449



Breadth

- Distance-Weighted Fragmentation
- Use average of the reciprocal of distance

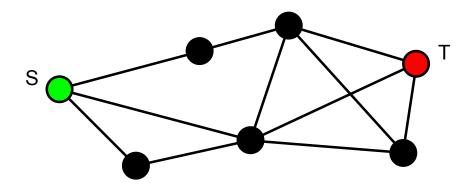
- letting
$$1/\infty = 0$$

 $B = 1 - \frac{\sum_{i,j} \frac{1}{d_{ij}}}{n(n-1)}$

- Bounds
 - lower bound of 0 when every pair is adjacent to every other (entire network is a clique)
 - upper bound of 1 when graph is all isolates

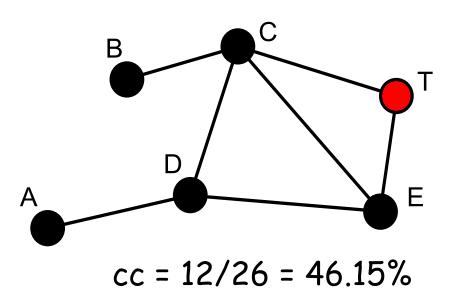
Connectivity

- Line connectivity λ is the minimum number of lines that must be removed to disconnect network
- Node connectivity κ is minimum number of nodes that must be removed to disconnect network



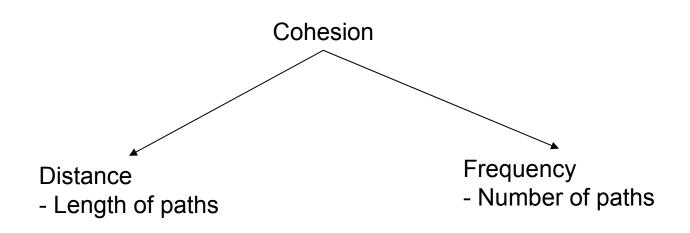
Transitivity

- Proportion of triples with 3 ties as a proportion of triples with 2 or more ties
 - Aka the clustering coefficient



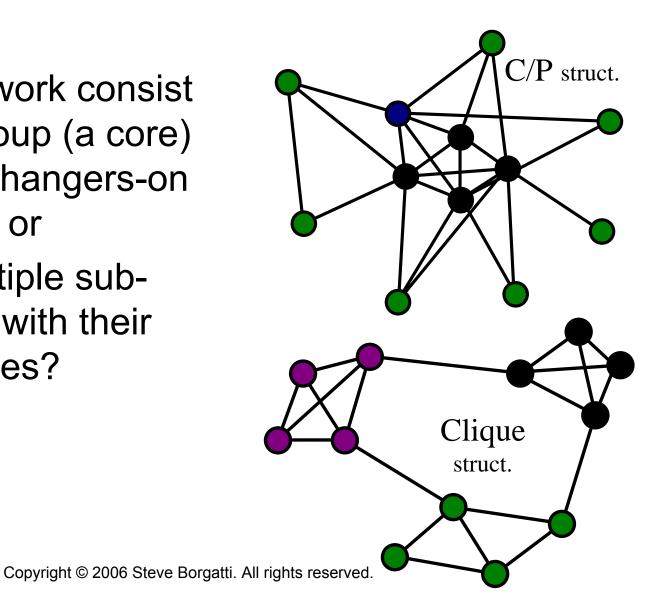
{C,T,E} is a transitive triple, but {B,C,D} is not. {A,D,T} is not counted at all.

Classifying Cohesion



Core/Periphery Structures

- Does the network consist of a single group (a core) together with hangers-on (a periphery), or
- are there multiple subgroups, each with their own peripheries?

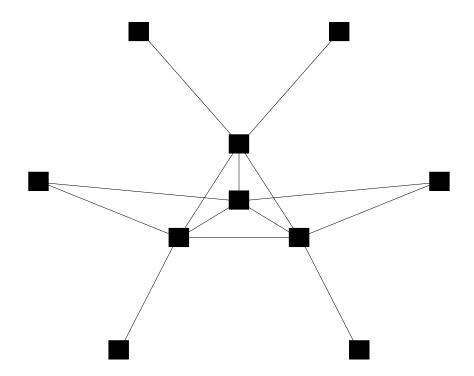


Kinds of CP/Models

- Partitions vs. subgraphs

 just as in cohesive subgroups
- Discrete vs. continuous
 - classes, or
 - coreness

A Core/Periphery Structure



Blocked/Permuted Adjacency Matrix

		СО	RΕ		PERIPHERY						
	_	1	1	1		1	0	0	1	0	0
	1	_	1	1		0	1	1	0	0	0
CORE	1	1	_	1		0	0	0	1	1	0
	1	1	1	-		1	0	0	0	0	1
	1	0	0	1		_	0	0	0	0	0
	0	1	0	0		0	_	0	0	0	0
PERIPHERY	0	1	0	0		0	0	—	0	0	0
	1	0	1	0		0	0	0	—	0	0
	0	0	1	0		0	0	0	0	_	0
	0	0	0	1		0	0	0	0	0	-

- Core-core is 1-block
- Core-periphery are (imperfect) 1-blocks
- Periphery-periphery is 0-block

Idealized Blockmodel

CORE

PERIPHERY

		1		-	-	1	-	-	1	4	
	-	1	1	1	1	1	1	1	1	1	
CORE	1	-	1	1	1	1	1	1	1	1	
	1	1	_	1	1	1	1	1	1	1	
	1	1	1	-	1	1	1	1	1	1	
	1	1	1	1	-	0	0	0	0	0	
	1	1	1	1	0	_	0	0	0	0	
PERIPHERY	1	1	1	1	0	0	-	0	0	0	
	1	1	1	1	0	0	0	-	0	0	
	1	1	1	1	0	0	0	0	-	0	
	1	1	1	1	0	0	0	0	0	-	

 $c_{i} = class (core or periphery) that node is assigned to <math display="block">\delta_{ij} = \begin{cases} 1 & if \quad c_{i} = C & O & R & E & or & c_{j} = C & O & R & E \\ 0 & o & th & erw & is & e \end{cases}$

Partitioning a Data Matrix

- Given a graphmatrix, we can randomly assign nodes to either core or periphery
- Search for partition that resembles the ideal

Assessing Fit to Data

a_{ij} = cell in data matrix

c_i = class (core or periphery) that node *i* is assigned to

$$\delta_{ij} = \begin{cases} 1 & if \quad c_i = C & O & R & E & or \quad c_j = C & O & R & E \\ 0 & o & th & erw & is & e \end{cases}$$

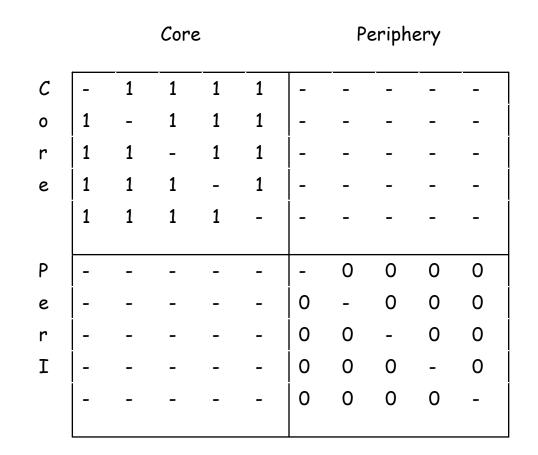
$$\rho \qquad = \sum_{i,j} a_{ij} \delta_{ij}$$

-40- • A Pearson correlation coefficient r(A,D) is

Alternative Images

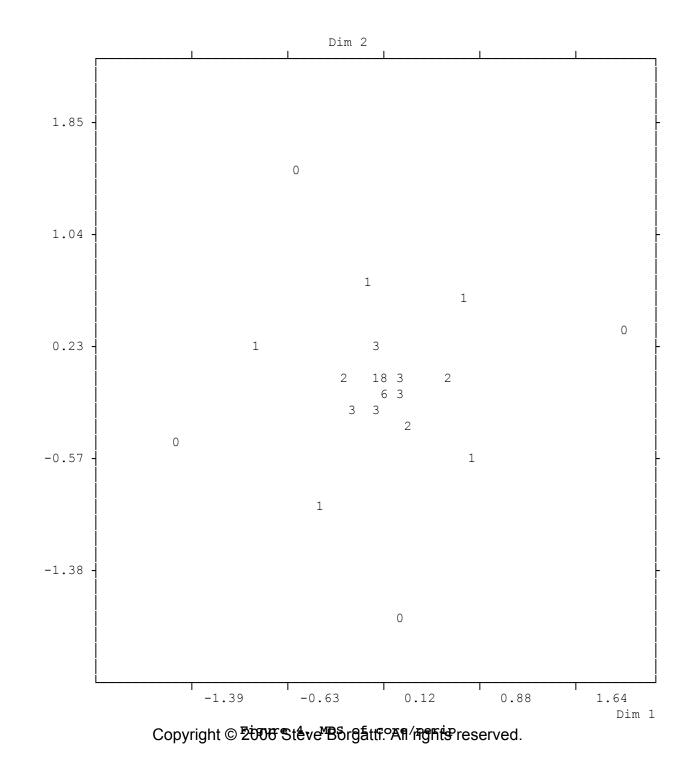
	Core						P	eriph	ery	
С	-	1	1	1	1	0	0	0	0	0
0	1	-	1	1	1	0	0	0	0	0
r	1	1	-	1	1	0	0	0	0	0
e	1	1	1	-	1	0	0	0	0	0
	1	1	1	1	-	0	0	0	0	0
Р	0	0	0	0	0	-	0	0	0	0
e	0	0	0	0	0	0	-	0	0	0
r	0	0	0	0	0	0	0	-	0	0
i	0	0	0	0	0	0	0	0	-	0
	0	0	0	0	0	0	0	0	0	-

Alternative Images



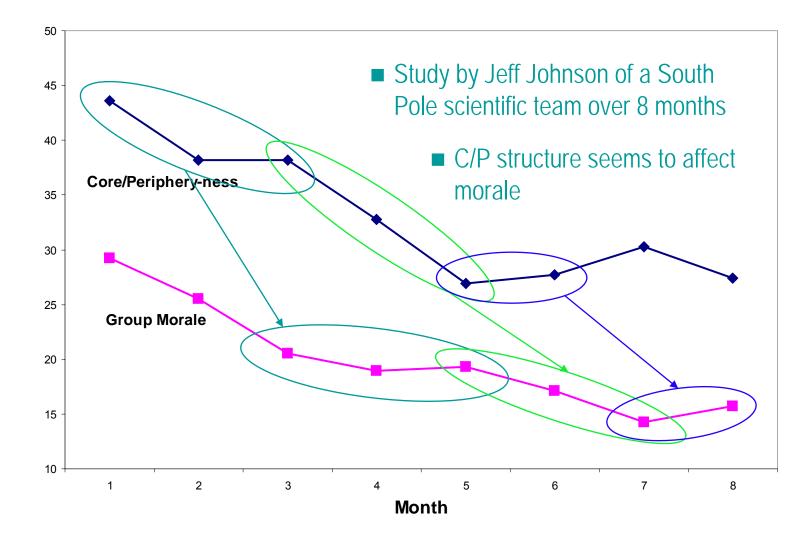
Continuous Model

- Xij ~ CiCj
 - Strength or probability of tie between node i and node j is function of product of coreness of each
 - Central players are connected to each other
 - Peripheral players are connected only to core



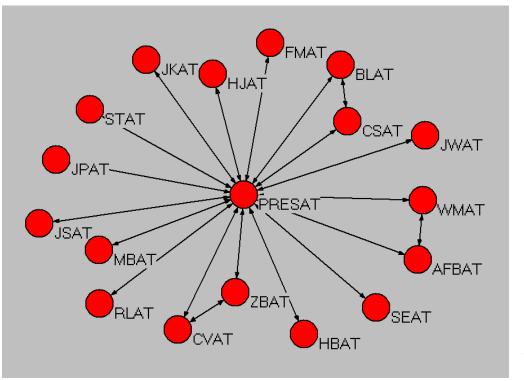
-44-

CP Structures & Morale



Centralization

 Degree to which network revolves around a single node



Carter admin. Year 1