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Before We Start

• Any questions on cohesion?  



Why do we care about 
Cohesive Subgroups

1. They exist!
2. They affect (social) processes we care 

about.
3. They offer the opportunity for data 

reduction:
– Analyze separately
– Aggregate cohesive subgroups



So, what are they?

• Many formalized definitions for lots of 
different flavors of cohesive subgroups, 
but, in general they are:

Sections of the network in which actors 
are more closely relate to each other, on
the whole, than to those outside that the 
group.
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Johnson’s Hierarchical Clustering

• Output is a set of nested partitions, starting with 
identity partition and ending with the complete 
partition
– A “PARTITION” is a vector that associates each node 

with one and only one “group” (mutually exclusive)
• Different flavors based on how distance from a 

cluster to outside point/node is defined
– Single linkage; connectedness; minimum
– Complete linkage; diameter; maximum
– Average, median, etc.
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Clustering Network Data
• Clustering requires symmetric data

– It will symmetrize if you don’t
• Does better with a range of values

P   M 
B       J A   I                  

H R C     E U   C         H   S    
O A A     N L   H B     J A G T B R
L Z R P P N I A A I L D O R E E E U
L E O A A I N N E L E O H R R V R S
Y Y L M T E E N L L E N N Y Y E T S

1 1 1 1 1 1 1 1 1
Level   1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
----- - - - - - - - - - - - - - - - - - -

0   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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Average method helps…
P           M                  
A     J     I         B        

C U   H E     C H       R S      
A L   O N   B H A     B A T G J R

P R I P L N A I A R D L E Z E E O U
A O N A L I N L E R O E R E V R H S
T L E M Y E N L L Y N E T Y E Y N S

1   1 1 1 1   1 1 1 1
Level   5 3 7 4 1 6 8 0 9 4 2 1 7 2 6 5 3 8

------ - - - - - - - - - - - - - - - - - -
1.0000   XXXXX XXX XXX XXXXXXX XXXXXXX XXXXX
0.6667   XXXXX XXXXXXX XXXXXXX XXXXXXX XXXXX
0.5657   XXXXX XXXXXXX XXXXXXX XXXXXXXXXXXXX
0.5185   XXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXX
0.0689   XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX
0.0119   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX



Applying HiClus to Network Data

• BETTER:
Compute geodesic 
distances first, 
then cluster the 
distance matrix

• Or cluster the 
structural 
equivalence 
matrix

Geodesic Distances

1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
H B C P P J P A M B L D J H G S B R
- - - - - - - - - - - - - - - - - -

1   HOLLY  0 4 2 1 1 2 2 2 1 2 4 1 3 1 2 3 4 3
2  BRAZEY  4 0 5 5 5 6 4 5 3 4 1 4 3 4 2 1 1 2
3   CAROL  2 5 0 1 1 2 1 2 3 4 5 3 2 3 3 4 4 3
4     PAM  1 5 1 0 2 1 1 1 2 3 5 2 2 2 3 4 4 3
5     PAT  1 5 1 2 0 1 1 2 2 3 5 2 2 2 3 4 4 3
6  JENNIE  2 6 2 1 1 0 2 1 3 4 6 3 3 3 4 5 5 4
7 PAULINE  2 4 1 1 1 2 0 1 3 4 4 3 1 3 2 3 3 2
8     ANN  2 5 2 1 2 1 1 0 3 4 5 3 2 3 3 4 4 3
9 MICHAEL  1 3 3 2 2 3 3 3 0 1 3 1 2 1 1 2 3 2

10    BILL  2 4 4 3 3 4 4 4 1 0 4 1 3 1 2 3 4 3
11     LEE  4 1 5 5 5 6 4 5 3 4 0 4 3 4 2 1 1 2
12     DON  1 4 3 2 2 3 3 3 1 1 4 0 3 1 2 3 4 3
13    JOHN  3 3 2 2 2 3 1 2 2 3 3 3 0 3 1 2 2 1
14   HARRY  1 4 3 2 2 3 3 3 1 1 4 1 3 0 2 3 4 3
15    GERY  2 2 3 3 3 4 2 3 1 2 2 2 1 2 0 1 2 1
16   STEVE  3 1 4 4 4 5 3 4 2 3 1 3 2 3 1 0 1 1
17    BERT  4 1 4 4 4 5 3 4 3 4 1 4 2 4 2 1 0 1
18    RUSS  3 2 3 3 3 4 2 3 2 3 2 3 1 3 1 1 1 0
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Hierarchical Clustering
P           M                  
A     J     I         B        

C U   H E     C H       R S      
A L   O N   B H A     B A T G J R

P R I P L N A I A R D L E Z E E O U
A O N A L I N L E R O E R E V R H S
T L E M Y E N L L Y N E T Y E Y N S

1   1 1 1 1   1 1 1 1
Level   5 3 7 4 1 6 8 0 9 4 2 1 7 2 6 5 3 8
----- - - - - - - - - - - - - - - - - - -
1.000   XXXXX XXX XXX XXXXXXX XXXXXXX XXXXX
1.333   XXXXX XXXXXXX XXXXXXX XXXXXXX XXXXX
1.457   XXXXX XXXXXXX XXXXXXX XXXXXXXXXXXXX
1.481   XXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXX
2.723   XXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX
3.142   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX



MDS
• Goal:  Position 

nodes in space with 
“similar” nodes near 
each other
– Nodes connected to 

the same people are 
“similar”

• Works better with 
more discriminating 
data (range of 
values)
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K-Means
• Given a set of points in space

– Place K new points, called centroids, (as far away 
from each other as possible) among the data

– Associated each point with the closest centroid
– Now, based on which points are associated with each 

centroid, reposition the centroid to the “middle” of all 
of them 

– Repeat until recentering does not move the centroids.

• Basically, groups are “clustered” based on their 
spatial relation to each other and these 
centroids.



Groups defined by an algorithm 
based on graph theoretic properties
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Newman-Girvan

• Calculate edge-betweenness for graph
• Remove edge with highest edge 

betweenness
• If number of components increases, create 

partition
• Recalculate edge betweenness & repeat 

until all nodes are isolates or maximum 
number of clusters reached/exceeded



Campnet Example
Newman-Girvan 2 Cluster Partition
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Where do you think the 2 Cluster Partition was?

What about the 4 Cluster Partition?



Groups w/specified characteristics, 
based on Graph Theoretic Measures
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Components
• Maximally connected subgraph

– In digraph there are strong and weak 
components:

• Strong components mean everyone can reach 
everyone else, even when considering the 
one-way streets in the network

• Weak components means, if we ignore the 
directionality of the ties, everyone is reachable by 
everyone else

• A single weak component my comprise multiple 
strong components (pseudo-hierarchical, 2-levels)
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Clique

• A maximal complete subgraph
– Everyone is adjacent to everyone else
– Distance & Diameter is 1
– Density is 1

• Limitations
– Undirected
– 3+ nodes



Problems with Cliques

• Can be too many or too few
• If too many:

– Can put minimum on size
– Can look at overlap

• If too few, relax requirements in terms of 
– Distance:

• n-cliques, n-clans, n-clubs
– Density

• k-cores, k-plexes, ls-sets, lamba sets



If too many….
• Look at CliqueSets

– 2-mode matrix in GLA
• Or CliqueOverlap

– Square matrix in MDS
– Or Hierarchical Cluster
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Too Few, RELAX (Don’t Do It)
Distance Requirement
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• n-Clique
– Maximal subset with all nodes 

within n steps of each other
• Path can include 

nodes not in n-Clique
• A Clique is a 1-Clique 

(we don’t count self-loops)
Is this a 2-Clique?
NO!  
What about now?

But so is this!!!



Some are counter-intuitive
(And not necessarily cohesive)

This is a 2-Clique
Red Nodes form a 

2-Clique, so do Blues



So, we can force more cohesion

• n-Clan is an n-Clique whose diameter in 
the subgraph induced from the nodes in 
the n-Clique is <= n
– Don’t allow paths to go outside subset

• SUBGRAPH
– A set of ties, together with ties among them

• An INDUCED SUBGRAPH
– A subgraph defined by a set of nodes (or 

lines) and ALL the incident ties (or nodes) 



2-Cliques vs. 2-Clans

This is a 2-Clique & a 2-Clan

Clans can be overlapping =>

{1,3,5} & {2,4,6} are 
2-Cliques but not 2-Clans

{1,2,3}, {2,3,4}, {3,4,5}, 
{4,5,6}, {5,6,1} & {6,1,2} are 

2-Clans and 2-Cliques

1
2

3

45

6



But, n-Clans have issues, too

• The n-Clique requirement is restrictive, so 
there are few found in the data

• Is {a,b,c,f} a 2-Clan?

• How many 2-Clans are 
there in this graph?

a

b c

d

ef



Loosening the restriction

• n-Clubs are, effectively, n-Clans that do not have 
the n-Clique requirement, or…
– A maximal subset S such that the graph induced by 

the nodes S has a diameter <= n

– Now {a,b,c,f} is a 2-Club,
so is {a,b,e,f}

• Properties:
– Painful (impossible) to compute
– More plentiful than n-Clans
– Overlapping

a

b c

d

ef



Another approach
• n-Cliques, n-Clans, and n-Clubs all start from the 

definition of Cliques and relax the distance 
requirement (all distances = 1) in varying ways

• But, Cliques also have maximum density (d = 1), 
and we can relax that definition instead…

• But for this, we must define the alpha operator, 
α, such that α(u,G) is the number of lines from 
node u to nodes in graph G



Relaxing the Density Requirement
• k-Plex

– A clique where members don’t have to be 
connected to everyone else, just all but k
members, or…

– a [maximal] subset S s.t. for all u in S, α(u,S) >= 
|S|-k, where |S| is size of set S

• All subsets of k-plexes are k-plexes (if non-maximal)
• Get distance for free based on S, k.  

– If k < (|S|+2)/2 then diameter <= 2
• Numerous & Overlapping
• May be more intuitive than distance-based measures
• A Clique is a 1-plex (missing itself)



K-Plex

a b

c

de

Is {a,b,d,e} a 2-plex?
Is {a,b,c,d,e} a 2-plex?
Is {a,b,d} a 2-plex?

Is the graph as a whole a 2-plex?
Is it a 3-plex? 



k-Core
• Sort of opposite approach from k-plex

– Because the size of the group is not taken into 
account, k-cores are more directly about specifying 
how many ties MUST be present independent of how 
many nodes are in the core, whereas the k-plex is 
about both.

• A k-Core is maximal subgraph within which all 
nodes have ties to at least k other nodes
– All nodes in a components are at least 1-Cores
– Each nodes is assigned a “core” which is the largest 

k-core to which it belongs (and it therefore also 
belongs to all lower cores that exist)

– K-cores are hierarchical and form a partition



ab

cd
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f

g

hi

j

k

l

• A k-core is a maximal subgraph such that 
for all u in S, α(u,S) >= k

– All nodes are 2-core (and 1-core) 
Red nodes are 3-core.

• Great for analyzing large networks

Another definition



LS-Sets

• Definition
– Given a graph G(V,E), let H be a subset of V, and let 

K be any proper subset of H
– H is LS if α(K,H-K) > α(K,V-H) for all K

• All subsets of the LS set are more connected to other LS 
members than outsiders of LS set

or…
– H is LS if α(K) > α(H), 

where α(K) => α(K,G-K) 
• Subsets better off joining LS set
• This one’s usually easier to compute

V

H
K



LS-Sets

• H is LS if α(K,H-K) > α(K,V-H)
– Use when K is large

or …
• H is LS if α(K) > α(H)

– Use when K is small

1 2

4
3

5

1 2

4
3

5

1 2

34

56

LS ?
LS ?



LS-Sets

• Properties – very cohesive
– Wholly nested or disjoint

• No partial overlaps
– More ties within than between 

• Everyone more connected inside than outside
– Contain no minimum weight cutsets 

• lie on either side of “fault lines”
– Multiple edge-independent paths within

• High edge-connectivity



Lambda Sets
• Definition

– A set of nodes S is a lambda set if, for all, a, b, c in S 
and d not in S, λ(a,b) > λ(c,d)

• where λ(u,v) is the number of edge-independent paths from 
node u to node v , which is also the minimum number of ties 
that must be removed in order to disconnect u and v

– Members of Lamba Sets have more independent 
paths to ALL other group members than ANY outsider

• Properties
– Robust

• very difficult to disconnect even with intelligent attack
– Mutually exclusive or wholly inclusive

• no partially overlapping groups
– Pure 

• defined on a single attribute (edge connectivity)



Lambda Sets
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Non-Trivial LS-Sets
{1,2,3,4}
{1,2,3,4,5,6,7,8}
{9,10,11,12}

Non-Trivial Lambda Sets
{1,2,3,4}
{1,2,3,4,5,6,7,8}
{9,10,11,12}
{5,6,7,8}
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Factions

• Computationally arrange nodes into 
mutually exclusive groups such that some 
predefined criteria is optimized

– For example, make groups that maximize 
density of internal ties and minimize density of 
external ties
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Campnet Example
Group Assignments:

1:  HOLLY MICHAEL BILL DON HARRY
2:  CAROL PAM PAT JENNIE PAULINE ANN
3:  BRAZEY LEE JOHN GERY STEVE BERT RUSS

1 1 1                   1 1   1 1 1 1  
1 0 2 4 9   4 6 8 7 5 3   1 3 2 5 6 7 8  
H B D H M   P J A P P C   L J B G S B R  
-----------------------------------------

1   HOLLY | 1   1     | 1       1   |               |
10    BILL |   1 1 1 1 |             |               |
12     DON | 1   1 1 1 |             |               |
14   HARRY | 1   1 1 1 |             |               |
9 MICHAEL | 1   1 1 1 |             |               |

-------------------------------------------
4     PAM |           | 1 1 1 1     |               |
6  JENNIE |           | 1 1 1   1   |               |
8     ANN |           | 1 1 1 1     |               |
7 PAULINE |           | 1     1 1 1 |               |
5     PAT | 1         |   1     1 1 |               |
3   CAROL |           | 1     1 1 1 |               |

-------------------------------------------
11     LEE |           |             | 1   1   1 1   |
13    JOHN |           |       1     |   1   1     1 |
2  BRAZEY |           |             | 1   1   1 1   |
15    GERY |         1 |             |       1 1   1 |
16   STEVE |           |             | 1       1 1 1 |
17    BERT |           |             | 1       1 1 1 |
18    RUSS |           |             |       1 1 1 1 |

------------------------------------------



Core-Periphery Models

• A core periphery structure has a single 
cohesive subgroup with a set of other 
nodes, loosely connected to the core 

• Core members interact with (lots of) other 
core members

• Peripheral members interact with (a few) 
core members



Finding Core/Periphery Structures

• Two ways to deal with it…
– One is a special case of factions, which 

maximizes density of core-to-core relations 
and minimizes all others (categorical)

– Another is a continuous model that calculates 
a “coreness” which is how much this node 
looks like a core node (continuous)


