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A FAMILY OF ASSOCIATION COEFFICIENTS FOR METRIC SCALES

Frits E. ZEGERS AND Jos M.F. TEN BERGE
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Four types of metric scales are distinguished: the absolute scale, the ratio scale, the difference
scale and the interval scale. A general coefficient of association for two variables of the same
metric scale type is developed. Some properties of this. general coefficient are discussed. It is
shown that the matrix containing these coefficients between any number of variables is Gramian.
The general coefficient reduces to specific coefficients of association for each of the four metric
scales. Two of these coefficients are well known, the product-moment correlation and Tucker’s
congruence coefficient. Applications of the new coefficients are discussed.
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The choice of an association (or similarity) coefficient between two variables depends
on the scale type to which the variables belong. The scale type of a variable is defined by
the class of admissible transformations. An admissible transformation is a transformation
under which the variable remains invariant. In fundamental measurement the invariance
properties are established by the uniqueness theorem (cf. Krantz, Luce, Suppes &
Tversky, 1971, p. 9). In a less formal context the scale type of a variable may be deter-
mined by the class of transformations which leave the meaning of the variable unaffected,
or, in an applied setting, by the class of transformations under which decisions made on
the basis of the variable remain the same.

An association coefficient between two variables has to be invariant under admissible
transformations of the variables, cf. Janson & Vegelius (1982). To this we can add the
requirement that an association coefficient has to be sensitive to non-admissible transfor-
mations of the variables. For example, rank ordering two interval scaled variables
changes their character, which should have an effect on the value of their association
coefficient. Used as an association coefficient between two interval scaled variables the
product moment correlation (PMC) meets both (in)variance requirements, whereas the
rank correlation fails to meet the second requirement.

Four types of metric scales are distinguished here. Best known is the interval scale,
which is invariant up to positive linear (affine) transformations. The other three metric
scales are the absolute scale, for which the identity transformation is the only admissible
transformation, the ratio scale, which is only invariant under similarity (positive multipli-
cative) transformations, and the difference scale (cf. Suppes & Zinnes, 1963), which is only
invariant under additive transformations.

Association coefficients between two variables which meet the two (in)variance re-
quirements are known for interval and for ratio scales. These are, respectively, the PMC
and Tucker’s congruence coefficient (Tucker, 1951), originally proposed by Burt (1948). In
this paper a general formula for association coefficients for metric scales will be proposed.
This general formula reduces to the PMC and Tucker’s congruence coefficient in the case
of two interval scaled and two ratio scaled variables, respectively. For the other two
metric scale types the general formula leads to appropriate association coefficients. These
new coefficients cannot be expressed as product moments in any obvious way. Neverthe-
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less, the associated matrices containing these coefficients between any number of variables
will be shown to be Gramian. Some applications of the new coefficients will be discussed.

A General Formula for Association
Coefficients for Metric Scales

In developing the general formula for association coefficients for metric scales we
assume that we have scores of n subjects (or objects) on two variables, X, and X j- An
individual score is denoted by X, or X moh=1,2, ..., n X;and X ; are variables be-
longing to one of the four metric scale types. The association coefficients will be defined as
sample statistics. The problem of generalizing to population characteristics will be taken
up in the discussion section.

Throughout the paper the following notation will be used: The mean score on X; is
denoted by M;. The sample variance of X ; 1s denoted by SZ, and the mean squared value

of X, is denoted by T?:
X2
T} = ¥, ()

where the summation sign, as in the remainder of this paper, denotes summation over
h=1ton. ‘

The general formula will be based on some kind of standardized version of the vari-
ables. Such a standardized version should be invariant under all admissible transforma-
tions of the variables and it should be sensitive to non-admissible transformations. In this
way it is ensured that the resulting association coefficient meets the two (in)variance re-
quirements. Because the term “standardized” version of a variable usually refers to a
version with a mean of zero and a variance of one we shall, to avoid ambiguity, refer to
the special kinds of standardized versions used in this paper as “uniformed” versions. A
uniformed version of a variable is obtained by applying a “uniforming” transformation to
the variable. A uniforming transformation for a certain scale type belongs to the class of
admissible transformations of that scale type. If an additive transformation is allowed the
uniforming transformation will center the variable around zero, if a multiplicative trans-
formation is allowed the uniforming transformation will rescale the variable to obtain a
mean squared value of one. The constants zero and one have been chosen for reasons of
convenience.

Let U; denote the uniformed version of X i» then the uniforming transformations are:

U, = X,, (2a)

for the absolute scale;
U:=X,—M,, (2b)

for the additive scale;
U,=T'X,, (20)

for the ratio scale, and
Uy =S74X, — M), (2d)

for the interval scale, where 7, and S; denote the square root of T? and S?, respectively.
From (2d) it is clear that for the interval scale the uniformed version of a variable is
identical to the usual standardized version.
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Let g;; denote the association coefficient between two variables X; and X;. As men-
tioned above, g;; will be based on the uniformed versions U; and U;. Therefore, g;; will be
some function fof U;and U;:

gdij = f(U,, Uj)- (3)

An association coefficient between two variables may be defined as the extent to which
their uniformed versions are identical. The mean squared difference of the uniformed
versions is a common indicator for this identity. A function of the mean squared differ-
ence which has the desirable property of attaining a maximum value of one if U; = U, is

fU,U)=1- 21 (Ui:l— Ujh)z’ 4)

where ¢ denotes some positive constant. The constant ¢ can be uniquely determined by
requiring
f(Uh _Uj)= _f(UiavUj), (3)

which means that reflecting one of the variables, which results in reflection of the corre-
sponding uniformed version, will merely change the sign of the association coefficient.
From (4) and (5) we have

1—en™ P Y (Uyp+Up)l=—-1+cen 'Y (Uy— Uy (6)
from which it follows that
c=Mn"tY Uh+n 'Y UL ()
Combining (3), (4) and (7) yields
gy=1- e Tua 22 Yaln ®)
QUL+Y UL QUL+Y UM

which is the general formula of association coefficients for metric scales.

For each of the four metric scale types, the proper uniforming transformation may be
inserted into (8). This yields four special coefficients of association. Before discussing these
coefficients separately, we will prove that a matrix containing g coefficients between any
number of variables is Gramian (symmetric and positive semidefinite). Three lemmas
which are needed for this proof will be presented first.

Lemma 1: The Hadamard (element-wise) product of two Gramian matrices is Gra-
mian.
Proof: See Schur (1911, p. 14) or Browne (1977, p. 208).

The proof of a closely related theorem, stating that the Hadamard product of two
symmetric positive definite (SPD) matrices is SPD, may be found in Bellman (1960, p. 94).
This proof can be easily modified into another proof of Lemma 1.

Lemma 2: A symmetric matrix is Gramian if and only if all principal minors are
nonnegative.
Proof: See Gantmacher (1958, p. 282).

Lemma 3: Let xy, ... x;, X;, ... X and y, ... y;, ¥j, ... ¥x be numbers satisfying
x;+y;#0, i, j=1, ... k. Let W, be the k x k matrix, k > 2, with elements w;; =
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(x; + y)~',i,j=1,... k. Then the determinant of W, is given by

k
H'(xi - xj)(yi - Yj)
L | P

©)

Proof: See Polya & Szegd (1925, p. 299).

A slightly different proof can be given by partitioning W, as

|
We-1] w
A I (10)
I X + Y

and using a standard result on determinants
det (W) = (x, + y) ™" det [Wy_; — (x, + ywo']. (11)

After some algebra we obtain the recurrent formula

1 k—1 o -
(e + yi) ey O + Y(xe + )
from which Lemma 3 can be deduced.

det (W;._,), (12)

<
The Matrix of g Coefficients is Gramian

Given a set of r variables, the g coefficients between the variables can be collected in
a symmetric matrix G, of order r, with elements

gij = 20;;(v;; + v;;) 71, (13)
where
vy=n"'Y (UnUy), ij=1,...r (14)
This matrix G may be expressed as the Hadamard product
G=UsV, 15)

where U denotes the symmetric matrix with elements v;; and V is the symmetric matrix
with elements 2(v; + v;;) ™.

By Lemma 1, G is Gramian if both U and V are Gramian. Clearly, U is Gramian,
being a product-moment matrix. It will be shown that V is Gramian too.

Let ¥, 1 < k < r, denote the symmetric submatrix of V, obtained by deleting all but
the first k rows and columns of V. Then det (Vi) is the k-th leading principal minor of V.
Because v; =n~' ) UZ > 0, we have

det (V) = v > 0. (16)

For 2<k<r, V, is a matrix of the type defined in Lemma 3, multiplied by 2, with
x; = y; = v;. Therefore,

H.(vii - vjj)z ,
det (V) = m >0 (17)
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with equality iff v;; = vj; for at least one pair (i, j). Equations (16) and (17) show that all
leading principal minors of V' are nonnegative. Because no use has been made of the
numbering of the r variables, (16) and (17) hold for any permutation and renumbering of
the variables. Therefore, it can be concluded that all principal minors of V' are nonnega-
tive, which, by Lemma 2, proves that V is Gramian.

The Gramian property of G is a sufficient condition for a representation of the vari-
ables in Euclidean space with distances proportional to (1 — g;)"%,i,j = 1, ... k (Gower,
1966), which implies that G can be used in various metric multivariate techniques.

The Gramian property of G together with the fact that all diagonal entries of G are
one also implies that G can be considered as a product moment correlation matrix. There-
fore the g coefficient has all the properties of the ordinary PMC. Some of these properties
have been imposed in the process of developing g, i.c. g;; < 1, g; = 1 and g;; = g;;. Other
properties of the g coefficient which follow immediately from the fact that G is a corre-
lation matrix are:

a. gdij > —1.
b. if g;; = 1, then g,,, = g;n, for every third variable m.
c. ifg;; = —1, then g;, = —g;n, for every third variable m.

The Four Coefficients of Association for Metric Scales

Inserting the proper uniforming transformation (2) into the general formula (8), yields
a coefficient of association for each of the four metric scales. These coefficients will now be
derived separately.

The Coefficient of ldentity

The association coefficient for absolute scales reflects the degree to which two vari-
ables are identical and, therefore, it will be called the coefficient of identity. Inserting the
identity transformation (2a) into the general formula (8) yields

e; =23 XuXu() Xi+2 Xi) 7l (18)

where e;; denotes the coefficient of identity.

The Coefficient of Additivity

The association coefficient for difference scales reflects the degree to which two vari-
ables are identical up to an additive transformation. This coefficient will be called the
coefficient of additivity. Inserting the additive transformation (2b) into the general formu-
la (8) yields '

a,-j = 2S”(S‘2 + Sf)—l, (19)

where S;; is the covariance between X; and X; and g;; denotes the coefficient of additivity.
The coefficient of additivity is the special case of Winer’s “anchor point” intraclass corre-
lation (Winer, 1971, p. 289-296) for only two variables. The coefficient of additivity is also
identical to a statistic which plays a role in various estimation problems of parameters in
bivariate normal distributions, cf. Cureton (1958, p. 722), Mehta & Gurland (1969) and
Kristof (1972).

The Coefficient of Proportionality

The association coefficient for ratio scales reflects the degree to which two variables
are identical up to a positive multiplicative transformation, that is, the degree to which
the variables are proportional. Therefore, this coefficient may be called the coefficient of
proportionality. Inserting the similarity transformation (2c) into the general formula (8)
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yields, after some algebra,
Pi=2 XX, X3y x3)-12 (20)

where p;; denotes the coefficient of proportionality. It is identical to Tucker’s congruence
coefficient. The coefficient of proportionality will be called congruence coefficient in the
remainder of this paper.

The Coefficient of Linearity

The coefficient of association for interval scales reflects the degree to which two
variables are identical up to a positive linear transformation. This coefficient may be
called the coefficient of linearity. The uniforming transformation (2d) equals the usual
standardization, transforming X, into Z;. Inserting U; = Z, and U j = Z; into the general
formula (8) yields .

ri=2Y ZoZu(Y Z4+Y Zz) (21)

where r;; is the coefficient of linearity. By observing that Y 72 = W4 2 = n, it is clear that
r;j is identical to the PMC.

Relations Between the Four Coefficients

Each of the four g coefficients has been cbtained by substituting the appropriate
uniforming transformation (2) into the general formula (8). Each of the coefficients reflects
the degree of identity of the uniformed versions of the variables. The more kinds of trans-
formations a scale type allows, the more freedom there is to transform the variables to a
high degree of identity. Therefore one could expect that for a given pair of variables the
PMC should always exceed or equal (in absolute value) the other three coefficients, and
that the coefficient of additivity and the congruence coefficient should exceed or equal (in
absolute value) the coefficient of identity. This, however, appears not to be true. Cnlv two
inequalities can be shown to exist. Specifically, we have

r,?j > a,-zj, (22)
and
P> e?j. (23)

Both inequalities (22) and (23) rely on the fact that the arithmetic mean of two positive
numbers exceeds or equals their geometric mean. From this we have, for instance,

2AS? SV < S+ 83, (24)
and therefore
SZ(SESH 1t > 45%(S? + 8372, (25)
which is equivalent to (22). Similarly (23) results from
A XLY XA <Y X5+ X3 (26)

In some situations two or more of the four g coefficients are identical. Equality in (24)
is obtained iff S7 = S}. In that case the coefficient of additivity is identical to the PMC.
Similarly, the coefficient of identity equals the congruence coefficient iff ' X7 =Y x?,
From (18) and (19) it is clear that the coefficient of identity and the coefficient of additivity
are identical if both variables have mean zero. Combining these results shows that all four
g coeflicients are identical if the variables have mean zero and equal sums of squares.

SRR o, <4
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Applications

Test Theory

If a set of items satisfies the requirements of the one parameter logistic (Rasch)
model, item and person parameters can be determined on a difference scale. To compare
the item parameters resulting from different studies with the same items, the coefficient of
additivity is an appropriate association measure. In this context McDonald (1982) has
suggested using the coefficient

$[Var (X)) + Var (X))]
It can be verified that McDonald’s coefficient is 1dentical to minus one plus twice the

coefficient of additivity. As a result McDonald’s coefficient lacks most of the desirable
properties of the coefficient of additivity.

T, =1 (27)

Profile Similarity

The introduction of the coefficients of additivity and identity provides some new
perspectives on profile analysis, that is, the analysis of sets of scores of individuals on a
number of variables. Nunnally (1978, p. 439) has argued that profiles contain three major
types of information: level (mean), dispersion (variance) and shape (distribution form).
Choosing a coefficient of profile similarity implies choosing to respect or ignore certain
types of information. For instance, adopting the PMC as a measure of profile similarity
implies that level and dispersion are ignored.

Adopting the coefficient of additivity as a measure of profile similarity implies ignor-
ing levels only. This can be useful as a means of eliminating the effects of certain response
tendencies, e.g., acquiescence on a vocational interest questionnaire, or leniency in the
case where ‘profiles’ of judges who evaluated a set of objects are compared.

When both levels and dispersions are to be respected then one may adopt the coef-
ficient of identity as a measure of profile similarity. Nunnally (1978, p. 444) advocated raw
score factor analysis of cross-products (i.e. numerators of the identity coefficients) as a
method of clustering profiles. Factoring coefficients of identity instead seems to be an
attractive alternative, since the latter are constrained to be between —1 and + 1.

Sjoberg and Holley (1967) have discussed a measure H of profile similarity which is
insensitive to changing the polarity (sign) of one or more variables in the profiles. Their H
coefficient is identical to the congruence coefficient. It may be noted that the coefficient of
identity is also insensitive to changing the polarity of one or more variables in the profiles,
which means that in this respect it is an alternative to the H coefficient.

Discussion

The association coefficients described in this paper have been derived as sample sta-
tistics. The population equivalents of the coefficient of additivity and the PMC can be
obtained by replacing sample variances and covariances by their corresponding popu-
lation parameters, degenerate cases excluded. The population equivalents of the coef-
ficient of identity and the congruence coefficient can be obtained in a parallel fashion, by
replacing mean cross-products and mean squares by corresponding expectations.

Sampling properties of the PMC are well-known. In addition, Kristof (1972) has
obtained some results for the statistic u (Mehta & Gurland, 1969), which is identical to
our coefficient of additivity. Sampling properties of the congruence coefficient and the
coefficient of identity seem not to be available, to the best of the authors’ knowledge.

The family of association measures, described in this paper, is by no means the only
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“family” to which its members belong. For instance, the PMC and the congruence coef-
ficient also belong to a family of coefficients r, derived by Cohen (1969, p. 282).
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