Network diagram by Alden Klovdahl, Australian National University

INTRODUCTION TO SOCIAL NETWORK ANALYSIS

Steve Borgatti sborgatti@uky.edu

www.analytictech.com/mgt780

In this presentation ...

- SNA as a discipline
- What is distinct
- Overview of theoretical concepts
- A few methodological issues

Painting by Idahlia Stanley

Explosive Growth

Embeddedness, social capital, SRT, collab theory
 TCE, RD, Institutional theory, transactional knowledge, etc

- Google page rank
- Social networking software
- Management consulting
- Network organizations
- Anti-terrorism
- Epidemiology

Development of the Field

1900s

- Durkheim
- Simmel
- 1930s Sociometry
 - Moreno; Hawthorne studies
 - Erdos
- 1940s Psychologists
 - Clique formally defined
- 1950s Anthropologists
 - Barnes, Bott & Manchester school
- 1960s Anthros & graph theorists
 - Kinship algebras; Mitchell
 - Harary establishes graph theory w/ textbooks, journals, etc

1970s Rise of Sociologists

- Modern field of SN is established (journal, conference, assoc, etc)
- Milgram small-world (late '60s)
- White; Granovetter weak ties
- 1980s Personal Computing
 - IBM PC & network programs
- 1990s Adaptive Radiation
 - UCINET IV released; Pajek
 - Wasserman & Faust text
 - Spread of networks & dyadic thinking; Rise of social capital,
- 2000s Physicists' "new science"
 - Scale-free
 - Small world

Formal Organization

Professional Assoc. (since '78)

- Int'l Network for Social Network Analysis -<u>www.insna.org</u>
- Incorporated 1993
- No dept. of Social Network Analysis
 - But a few centers …

Centers

- LINKS (U of Kentucky)
- Network Roundtable (U of Virginia)
- CASOS (Carnegie Mellon)
- Networked Governance (Harvard)
- Watson Research Center (IBM)
- NICO (Northwestern)
- ISNAE
- IMBS (UC-Irvine)
- Coalition Theory Network (European consortium)
- CCNR (Notre Dame, Physics)
- Nuffield Network Researchers (Oxford)
- Bader Lab (U of Toronto, Biology)
- CSSS (U of Washington, Statistics)

Conferences & Workshops

Sunbelt annual conference (since '79)

- 2001: Budapest, HUNGARY
- 2002: New Orleans, USA
- 2003: Cancun, MEXICO
- 2004: Portorôs, SLOVENIA
- 2005: Los Angeles, USA
- 2006: Vancouver, CANADA
- 2007: Corfu, GREECE
- 2008: St Pete, Florida, USA
- 2009: San Diego, USA
- 2009: Trento, ITALY

Regular Training Workshops

- Sunbelt social networks conference
 - 1-day workshops
- Academy of Management
- University of Essex, UK
 2-week
- CARMA
 - 1-week
- ICPSR-Michigan
- LINKS center
 - Coming soon!

Resources

Specialized journals

- Social Networks, (since '79)
- CONNECTIONS, official bulletin of INSNA
- Journal of Social Structure (electronic)
- CMOT
- Textbooks
 - Kilduff & Tsai, 2004
 - Scott, John. 1991/2000
 - Degenne & Forsé. 1999
 - Wasserman & Faust. 1994

Software

- UCINET 6/NETDRAW;
- PAJEK
- SIENA
- STRUCTURE; GRADAP; KRACKPLOT

Listservs & Groups

- SOCNET listserv (1993)
- REDES listserv
- UCINET user's group

Online Resources

- www.analytictech.com/mgt780
- http://linkscenter.org
- www.insna.org
- www.analytictech.com/networks

BASIC IDEA

17 January 2009

Mainstream Social Science

Individual outcomes as a function of individual attributes

- Predict career success as a function of a person's training, experience, skills, looks, etc.
- Analysis consists of correlating columns
 - Typically identify one column as the thing to be explained
 - We explain one attribute as a function of the others

Cases (entities)

Variables (attributes)

	Age	Sex	Education	Income
1001				
1002				
1003				
1004				
1005				

Attributes to Relations

- Shift from attributes of the individual as sole explanation to their relationships and interactions with others as also explanatory
- The case of entrepreneurial success
 - Success a function of entrepreneur's talents and resources
 - But the person themselves don't have to have all of these talents themselves, they just need to know someone who does
 - Its who you know, and what qualities those people have
 - And it's about the nature of your relationship can you draw on their resources?
 - Social resource theory (Nan Lin)

Attributes to Relations

Shift from attributes of the individual as sole explanation to their relationships and interactions with others as also explanatory

- The case of entrepreneurial success
- The case of the iPhone
 - Who adopts a gadget such as an iphone?
 - Mechanism of social influence

Attributes to Relations

ТΧ

10

NY

NY

NY

18

0

Shift from attributes of the individual as sole explanation to their relationships and interactions with others as also explanatory

NY

The case of entrepreneurial success

NY

21

- The case of the iPhone
- The case of AIDS

 Homosexuality or contagion?

NY 13

16

NY 11

NY

17

NY

NY

What's entailed in this shift?

Theory

- Looking to the person's environment for explanation
 - Seeing that environment as individuals
 - Focusing on the nature of the ties with those individuals
- Interpersonal processes as influence, contagion
- Methodology
 - Collecting data on relationships as well as individuals
 - New unit of observation: the dyad

What else is entailed?

Dyads link up to form networks

 How strangers affect your outcomes: Propagations and flows through network paths

Position in the network matters

- Centrality
- Risks and opportunities

ТΧ

10

Case Study: Pitts' analysis of Moscow's emergence to pre-eminence

Position in the River Network

Rate of return on human capital

Burt (1992): A person's connections determine the rate of return on human capital

Human Capital and Social Capital

How far can you get on human capital alone?Betting on social capital

What else is entailed?

Dyads link up to form networks

How strangers affect your outcomes: Propagations and flows through network paths

Position in the network matters

- Centrality
- Risks and opportunities
- Structure matters
 - It's not just about resources, it is how they are configured
 - "Chemistry" of a basketball team

Cross, Parker, & Borgatti, 2002. Making Invisible Work Visible. California Management Review. 44(2): 25-46

Changes Made

- Cross-staffed new internal projects
 - white papers, database development
- Established cross-selling sales goals
 - managers accountable for selling projects with both kinds of expertise
- New communication vehicles
 - project tracking db; weekly email update
- Personnel changes

9 Months Later

Cross, Parker, & Borgatti, 2002. Making Invisible Work Visible. California Management Review. 44(2): 25-46

BASIC CONCEPTS

What is a Network?

A set of actors (nodes, points, vertices)

- Individuals (e.g., persons, chimps)
- Collectivities (e.g., firms, nations, species)
- A set of ties (links, lines, edges, arcs) of a given type that connect pairs of actors in the set
 - Directed or undirected
 - Valued or presence/absence
- Set of ties of a given type constitutes a social relation
- Different relations have different structures & consequences

000 scientists

Case Study: Simple Answers

Who you ask for answers to straightforward questions.

Cross, R., Borgatti, S.P., & Parker, A. 2001. Beyond Answers: Dimensions of the Advice 17 January 2009 Network. 759 6 2000 Kesterre 13 2009 26

Problem Reformulation

Who you see to help you think through issues

Cross, R., Borgatti, S.P., & Parker, A. 2001. Beyond Answers: Dimensions of the Advice 17 January 2009 Network. 300 arWerWork B29(\$): 215-235 27

Types of Ties among Persons

Relations Among Organizations

As corporate entities

- sells to, leases to, lends to, outsources to
- joint ventures, alliances, invests in, subsidiary
- regulates
- Through members
 - ex-member of (personnel flow)
 - interlocking directorates
 - all social relations

Types of Inter-Organizational Ties

Cross-classified by type of tie and type of node

Type of Tie	Firms as Entities	Via Individuals
Similarities	Joint membership in trade association; Co-located in Silicon valley	Interlocking directorates; CEO of A is next-door neighbor of CEO of B
Relations	Joint ventures; Alliances; Distribution agreements; Own shares in; Regards as competitor	Chief Scientist of A is friends with Chief Scientist of B
Interactions	Sells product to; Makes competitive move in response to	Employees of A go bowling with employees of B
Flows	Technology transfers; Cash infusions such as stock offerings	Emp of A leaks information to emp of B

Internet Alliances

Academy of Management Division Co-Membership > 27%

Symmetric versus non-symmetric relations

Valued Ties

Walks, Trails, Paths

Path: can't repeat node

 1-2-3-4-5-6-7-8
 Not 7-1-2-3-7-4

 Trail: can't repeat line

 1-2-3-1-7-8
 Not 7-1-2-7-1-4

 Walk: unrestricted

 1-2-3-1-7-1

Copyright © 2006 Steve

Graphical versus adjacency matrix representations

Who is friends with whom

	1	I3	W1	W2	W3	W4	W5	W6	W7	W8	W9	S1	S2	S4	Sum	Avg
11		0	1	1	1	1	0	0	0	0	0	0	0	0	4	0.31
13	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0.00
W1	1	0		1	1	1	1	0	0	0	0	1	0	0	6	0.46
W2	1	0	1		1	1	0	0	0	0	0	1	0	0	5	0.38
W3	1	0	1	1		1	1	0	0	0	0	1	0	0	6	0.46
W4	1	0	1	1	1		1	0	0	0	0	1	0	0	6	0.46
W5	0	0	1	0	1	1		0	1	0	0	1	0	0	5	0.38
W6	0	0	0	0	0	0	0		1	1	1	0	0	0	3	0.23
W7	0	0	0	0	0	0	1	1		1	1	0	0	1	5	0.38
W8	0	0	0	0	0	0	0	1	1		1	0	0	1	4	0.31
W9	0	0	0	0	0	0	0	1	1	1		0	0	1	4	0.31
S1	0	0	1	1	1	1	1	0	0	0	0		0	0	5	0.38
S2	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0.00
S4	0	0	0	0	0	0	0	0	1	1	1	0	0		3	0.23
Sum	4	0	6	5	6	6	5	3	5	4	4	5	0	3	56	
Avg	0.31	0.00	0.46	0.38	0.46	0.46	0.38	0.23	0.38	0.31	0.31	0.38	0.00	0.23		0.31

Adjacency Matrix

	I1	I3	W1	W2	W3	W4	W5	W6	W7	W8	W9	S1	S2	S4	Sum	Avg
11		0	1	1	1	1	0	0	0	0	0	0	0	0	4	0.31
13	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0.00
W1	1	0		1	1	1	1	0	0	0	0	1	0	0	6	0.46
W2	1	0	1		1	1	0	0	0	0	0	1	0	0	5	0.38
W3	1	0	1	1		1	1	0	0	0	0	1	0	0	6	0.46
W4	1	0	1	1	1		1	0	0	0	0	1	0	0	6	0.46
W5	0	0	1	0	1	1		0	1	0	0	1	0	0	5	0.38
W6	0	0	0	0	0	0	0		1	1	1	0	0	0	3	0.23
W7	0	0	0	0	0	0	1	1		1	1	0	0	1	5	0.38
W8	0	0	0	0	0	0	0	1	1		1	0	0	1	4	0.31
W9	0	0	0	0	0	0	0	1	1	1		0	0	1	4	0.31
S1	0	0	1	1	1	1	1	0	0	0	0		0	0	5	0.38
S2	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0.00
S4	0	0	0	0	0	0	0	0	1	1	1	0	0		3	0.23
Sum	4	0	6	5	6	6	5	3	5	4	4	5	0	3	56	
Avg	0.31	0.00	0.46	0.38	0.46	0.46	0.38	0.23	0.38	0.31	0.31	0.38	0.00	0.23		0.31

17 January 2009

Multiple Levels of Analysis

Dyad (relationship) level

- Network data is fundamentally dyadic
 - Who is friends with whom in an office
 - Distance in meters between people's desks
 - Marriage ties among families in Renaissance Florence
 - Business ties among the same families
- Node (actor) level
 - Can aggregate to the node level (e.g., no. of friends)
 - Or measure aspects of a node's position in the network
- Group (network) level
 - Aggregation to the group or whole network level (e.g., no. of ties within group
 - Or measure aspects of network shape (e.g. centralization)

Family of Theoretical Constructs

Network/Group Properties

Cohesion Concepts

- How "well connected" the network is, e.g.,
 - Number of ties
 - Shortness of paths
 - How difficult it is to disconnect the network by removing nodes

Shape Concepts

What is the structure of the network?

Density of ties

Density = proportion of pairs of actors that are actually tied

In some contexts, could be thought of as measure of group social capital

Case Study: Entwistle et al study of help with the rice harvest

Village 1

Data from Entwistle et al

GROUP level of analysis

Social Capital?

Village 2

17 January 2009

MGT 780 © 2008 Steve Borgatti

Data from Entwistle et al

43

Core/Periphery Structures

Core/Periphery

- Network consists of single group (a core) together with hangers-on (a periphery),
 - Core connects to all
 - Periphery connects only to the core
- Short distances, good for transmitting information, practices
- Identification with group as whole
- E.g., structure of physics

Clique structure

- Multiple subgroups or factions
- Identity with subgroup
- Diversity of norms, belief
- E.g., structure of social science

On Innovation and Network Structure

"I would never have conceived my theory, let alone have made a great effort to verify it, if I had been more familiar with major developments in physics that were taking place. Moreover, my initial ignorance of the powerful, false objections that were raised against my ideas protected those ideas from being nipped in the bud."

- Michael Polanyi (1963), on a major contribution to physics

GROUP level of analysis Case Study: Johnson's study of morale at the South Pole

Node Level Concepts Individual level social capital

- Centrality
 - Betweenness: how often a node lies on shortest path between two others
 - Closeness: how far away a node is on average from all others
- Structural holes
 - Extent to which a node's contacts are unconnected from each other

Structural Holes

Year 1

Year 4

White House Diary Data, Carter Administration

17 January 2009

MGT 780 © 2008 Steve Borgatti

Data courtesy of Michael Link

Betweenness Centrality

How often a node lies along the shortest path between two other nodes

Defined as:

$$b_k = \sum_{i,j} \frac{g_{ikj}}{g_{ij}}$$

where gij is number of geodesic paths from i to j and gikj is number of those paths that pass through k

- Seen as index of potential for gatekeeping, brokering, controlling the flow, and also of liaising otherwise separate parts of the network;
- Expected to correlate with power and access to diversity of what flows; potential for synthesizing

NODE level of analysis

Case Study: Pitts' analysis of Moscow's emergence to pre-eminence

17 January 2009

MGT 780 © 2008 Steve Borgatti

NODE level of analysis

Moscow has highest betweenness in the river network

MGT 780 © 2008 Steve Borgatti

Dyadic Level

Properties of dyads

- Raw network data
- Degrees of separation
- Multiplexity

Dyad Level of Analysis

- Multiplexity
- Case Study: Tom Allen (1977) study of physical proximity and amount of communication

Distance (meters)

Homophily

Tendency to interact with or have positive relations with people who are similar to oneself along socially significant lines

Gender	Male	Female	Race	White	Black
Male	1245	748	White	3806	29
Female	970	1515	Black	40	283

Age	< 30	30 - 39	40 - 49	50 - 59	60 +
< 30	567	186	183	155	56
30 - 39	191	501	171	128	106
40 - 49	88	170	246	84	70
50 - 59	84	100	121	210	108
60 +	34	127	138	212	387

17 Janu

Causality and Network Research

TYPES OF SIMPLE HYPOTHESES

	Independent Variable	Dependent Variable	Example Study		
	Network tie	Network tie	doing business w/ ea other → friendship		
Dyad Level	Network tie	Attribute similarity	Friends → similar political attitudes		
	Attribute similarity	Network tie	Smoking → friendship		
	Node level network property	Node level network property	Degree → betweenness		
Node Level	Node level network property	Actor attribute	Centrality \rightarrow performance		
	Actor attribute	Node level network property	Good looks → centrality		
Group Level	Group level network property	Group level network property	Density → Avg path length		
	Group level network property	Other group attribute	Density \rightarrow team performance		
	Other group attribute	Group level network property	Prop women → density of trust ties		

Consequences of Network Variables

Ends	Explaining Variance in Performance	Explaining Social Homogeneity
Means	(social capital)	(adoption)
Connectionist mechanisms (flows thru ties)	Success comes from obtaining resources <u>through</u> social ties; Lin's social resource theory	People have same behavior because they directly influence each other & transmit ideas, beliefs, etc.
Topological mechanisms (emergent properties of topology)	Network positions /shapes provide opportunities for exploitation; Burt's autonomy theory	People have same behavior because their network positions are similar (and affect them similarly); same social environment

Borgatti, S.P. and Foster, P. 2003. The network paradigm in organizational research: A review and typology. *Journal of Management*. 29(6): 991-1013

17 January 2009

MGT 780 © 2008 Steve Borgatti

An Example of Network Theorizing

Granovetter's strength of weak ties (SWT) theory

- If bridges tend to be the sources of novel information, and
- If strong ties tend to create embeddedness, then
 - Weak ties tend to be the sources of novel information
- The argument is graph-theoretic

bridge

The Frontier

Where the energy is

- Stochastic methods ERGM, SIENA
 Analyzing transactions & interactions
 Network evolution
- Simulation, what-if analysis, optimization
- Automated data collection & imputation
 Taking advantage of the google era
- Large networks

Trends & Buzzwords

Is the field getting too popular too fast?

of Social Capita Papers Embeddedness Weak ties Network ties "Networking" 1975 1985 1995 Time WARNING: Totally made-up data! Do not take seriously! DEGREES Do fads sweep out equal areas under the graph? A CONNECTED AGE UNCAN J. WATTS 17 January 2009 MGT 780 © 2008 Steve Borgatti

Small worlds

Communities?

Scale-free