#### Centrality II

## What is centrality?

- "prominence" or structural importance
- Influence, power, status, control, independence, information

## Minimum criteria

- Sabidussi
  - Adding a tie to node cannot reduce centrality
  - Adding a tie anywhere in network cannot reduce centrality of a given node
  - Etc
- Freeman
  - Must achieve maximum value for the center of a star

## Involvement in path structure

• Borgatti and Everett

## Assumptions of std measures

- Degree
  - Only paths of length 1 considered
- Closeness & betweenness
  - Only shortest paths counted
- Flow betweenness
  - Edge-independent paths of all lengths
- Eigenvector, katz, hubbell, bonacich etc.
  - Unrestricted walks

## Dimensions of similarity / difference

- Traversal type: geodesics, paths, trails, walks, independent paths etc
- Summarization type: sums, averages, minimums, etc.
- Traversal property: frequency or length?
  - The no. of traversals of various kinds that a node is involved in
  - The length of traversals that involve a node
- Node position: radial or medial?
  - Walks emanating from / terminating with a node
  - Walks passing through a node

## **Classification of Measures**

• Note: summarization type suppressed

| Paths     |                                                                       |                                                               |   |
|-----------|-----------------------------------------------------------------------|---------------------------------------------------------------|---|
| Trails    |                                                                       |                                                               | / |
| Walks     |                                                                       |                                                               |   |
| Units     | Radial                                                                | Medial                                                        |   |
|           | (emanating to/from node)                                              | (passing thru node)                                           |   |
| Frequency | (a) degree, k-path centrality,<br>reach, eigenvector, Hubbell,<br>GPI | (c) betweenness, flow<br>betweenness,<br>proximal betweenness |   |
|           | Katz, Bonacich power, Alpha<br>Centrality                             |                                                               |   |
| Length    | (b) closeness, information,<br>current flow closeness                 | (d) < no well-known<br>measures >                             |   |

## Defining centrality – cont.

- Borgatti and Everett argued that centralities measure the involvement of nodes in the paths of the network
  - Radial measures count paths originating from (or terminating) at a node
  - Medial measures count paths passing through a node
  - Within these classes, measures differ based on what kinds of paths are examined
    - Shortest paths; Independent paths; Paths of length 1, etc

#### Expected values of flow outcomes

How do the assumptions of the measures match different kinds of real flow processes?

What are some things that flow through networks?

- Used goods
- Money
- Packages
- Personnel

- Gossip / information
- E-mail
- Infections
- Attitudes

#### Letters

- Example:
  - package delivered by postal service
- Single object at only one place at one time
- Map of network enables the intelligent object to select only the shortest paths to all destinations
  - (hopefully) travels along shortest paths (geodesics)

## Used Goods

- Canonical example:
  - passing along paperback novel
- Single object in only one place at a time
- Doesn't (usually) travel between same pair twice
- Could be received by the same person twice
  - A--B--C--B--D--E--B--F--C ...
  - Travels along graph-theoretic trails

## Money Exchange Process

- Examples:
  - specific dollar bill moving through the economy
  - Erdös itinerary
  - Any markov process
- Single object in only one place at a time
- Can travel between same pair more than once
  - A--B--C--B--C--D--E--B--C--B--C ...
  - Travels along unconstrained walks

## **Viral Infection Process**

- Example:
  - virus which activates effective immunological response (including preventing carrying) or which kills host
- Multiple copies may exist simultaneously
- Cannot revisit a node
  - A--B--C--E--D--F...
  - Travels along graph-theoretic paths

## Homeless Relative

- Examples
  - Obnoxious homeless relative who visits for six months until kicked out and moves to next relative
  - Personnel flows between firms
- In just one place at a time
- Doesn't repeat a node (bridges burned)
  - Travels along paths

## **Gossip Process**

- Example:
  - Confidential story moving through informal network
- Multiple copies exist simultaneously
- Person tells only one person at a time\*
- Doesn't travel between same pair twice
- Can reach same person multiple times

\* More generally, they tell a very limited number at a time.



#### Which processes are off-the-shelf centrality measures appropriate for?

No. of edges incident upon a node Degree: **Closeness:** Sum of geodesic distances to all other nodes Betweenness: Share of geodesics that pass through given node No. of walks emanating from node, wtd inversely by length Eigenvector:



## Two questions

- What if we use a centrality measure that is compatible with one kind of flow in a situation involving a different flow? E.g.,
  - Suppose you use betweenness, but what you are studying doesn't flow via shortest paths only?
  - What if what you are studying flows along multiple paths at the same time? Betweenness assumes a single path ...
- How do the standard measures relate to our theoretical variables
  - The expected amount of time until arrival of flow at a node
  - How likely (how often) the flow reaches a given node

## Motivation

- Centrality often used to predict performance
  - More central nodes have better access to information, resources – whatever flows through network
  - "better" means
    - More likely to receive it
    - Receive it sooner
- Can we use standard measures of centrality for this?

## Simulation Experiment

- Given a network along which something flows
- Repeat 10,000 times:
  - Let traffic flow according to the rules of a given flow process
  - For each node, measure
    - Time. Time of first arrival at every node
    - Frequency. No of times arriving at each node
- Compare with standard centrality measures
- Repeat for different kinds of flow

#### **Illustrative Dataset**



Padgett & Ansell (1991). Marriage ties among Florentine families during the Renaissance (c) 2008 Steve Borgatti

#### Simulation Results

Frequency of Visits

Proportional to degree

| Exa       | ct match    |          |           |       |        |        |        |
|-----------|-------------|----------|-----------|-------|--------|--------|--------|
| Nede      | Freeman     | Deelvege | Llomolooo | Used  | Casain | Vinue  | Manay  |
| Node      | Betweenness | Раскаде  | Homeless  | Goods | Gossip | VIIUS  | woney  |
| MEDICI    | 47.5        | 47.5     | 113.7     | 129.8 | 334.3  | 887.03 | 1155.1 |
| GUADAGNI  | 23.2        | 22.8     | 74.9      | 73.8  | 252.2  | 513.35 | 827.9  |
| ALBIZZI   | 19.3        | 19.2     | 41.5      | 48.5  | 185.0  | 285.37 | 665.9  |
| SALVIATI  | 13.0        | 13.0     | 26.0      | 26.0  | 168.0  | 182.00 | 503.3  |
| RIDOLFI   | 10.3        | 10.7     | 61.3      | 64.2  | 189.0  | 227.89 | 665.4  |
| BISCHERI  | 9.5         | 9.5      | 60.9      | 58.6  | 189.0  | 257.23 | 664.7  |
| STROZZI   | 9.3         | 9.7      | 78.1      | 84.8  | 295.6  | 435.10 | 827.5  |
| BARBADORI | 8.5         | 8.5      | 45.8      | 46.5  | 176.0  | 107.65 | 503.5  |
| TORNABUON | 8.3         | 8.2      | 58.2      | 59.8  | 189.0  | 222.97 | 666.1  |
| CASTELLAN | 5.0         | 5.0      | 64.5      | 64.7  | 188.7  | 277.20 | 665.3  |
| PERUZZI   | 2.0         | 2.0      | 59.1      | 55.1  | 189.0  | 232.30 | 664.7  |
| ACCIAIUOL | 0.0         | 0.0      | 0.0       | 0.0   | 0.0    | 0.00   | 176.9  |
| GINORI    | 0.0         | 0.0      | 0.0       | 0.0   | 0.0    | 0.00   | 176.8  |
| LAMBERTES | 0.0         | 0.0      | 0.0       | 0.0   | 0.0    | 0.00   | 176.6  |
| PAZZI     | 0.0         | 0.0      | 0.0       | 0.0   | 0.0    | 0.00   | 177.2  |

Number of times token passed through each node en route from source to target

## Betweenness / Freq of Visits



Freeman betweenness underestimates importance of Strozzi family

## Frequency of Arrivals

- Freeman betweenness definition gives exact expected values for frequency of visits in *package delivery* process (transfer+geodesics)
  - And **only** the package delivery process
- Other kinds of flow have different outcomes
  - Strozzi family strongly undervalued by Freeman measure
  - Misidentification of topmost central actors
- Also as predicted, money exchange process (transfer+walks) yields scores exactly proportional to degree centrality
  - For that process, degree and betweenness are indistinguishable concepts

## Closeness / Time to Arrival

|           | _       |         |          | Used  | <b>.</b> . |       |       |
|-----------|---------|---------|----------|-------|------------|-------|-------|
| Node      | Freeman | Package | Homeless | Goods | Gossip     | Virus | Money |
| MEDICI    | 25      | 25.0    | 46.7     | 50.1  | 78.9       | 63.7  | 575.2 |
| RIDOLFI   | 28      | 28.0    | 57.5     | 60.6  | 95.7       | 70.8  | 587.7 |
| ALBIZZI   | 29      | 29.0    | 55.7     | 53.3  | 100.7      | 68.6  | 562.3 |
| TORNABUON | 29      | 29.0    | 56.4     | 58.1  | 98.2       | 70.0  | 584.8 |
| GUADAGNI  | 30      | 30.0    | 53.7     | 54.8  | 109.3      | 68.8  | 575.3 |
| BARBADORI | 32      | 32.0    | 60.5     | 55.3  | 112.3      | 73.1  | 584.4 |
| STROZZI   | 32      | 32.0    | 59.9     | 61.3  | 104.0      | 73.3  | 602.9 |
| BISCHERI  | 35      | 35.0    | 61.1     | 63.9  | 111.6      | 74.1  | 599.0 |
| CASTELLAN | 36      | 36.0    | 58.3     | 64.6  | 125.8      | 73.3  | 599.2 |
| SALVIATI  | 36      | 36.0    | 57.6     | 59.9  | 94.3       | 72.7  | 533.0 |
| ACCIAIUOL | 38      | 38.0    | 59.5     | 64.3  | 98.2       | 69.8  | 536.3 |
| PERUZZI   | 38      | 38.0    | 61.3     | 67.9  | 111.3      | 75.4  | 603.7 |
| GINORI    | 42      | 42.0    | 68.9     | 65.3  | 124.5      | 75.9  | 523.2 |
| LAMBERTES | 43      | 43.0    | 66.4     | 69.8  | 109.6      | 76.1  | 538.2 |
| PAZZI     | 49      | 49.0    | 70.7     | 72.9  | 155.9      | 78.8  | 497.8 |

Units of time passed until node received token for first time

#### **First Arrival Times**



## **Closeness Asymmetry**



When traffic does not follow shortest paths, nodes on the right may reach the nodes on the left more quickly than the other way around



## Comparing in-flow and out-flow



## **Arrival Times**

- Like betweenness, Freeman closeness measure gives correct values in package delivery process, but not other processes
- Centrality measures on undirected graphs necessarily give same prediction for time until arrival as time to reach others, but in reality these are not the same
  - Proximity to hub is better for spreading than receiving

#### Which processes are off-the-shelf centrality measures appropriate for?

No. of edges incident upon a node Degree: **Closeness:** Sum of geodesic distances to all other nodes Betweenness: Share of geodesics that pass through given node No. of walks emanating from node, wtd inversely by length Eigenvector:



## Centralities as Statistical Models

- Given explicit model of flow process, centrality measures can be seen as expected values for node outcomes, e.g.,
  - first arrival times
  - freq of arrivals
- Off-the-shelf measures of centrality only appropriate for certain flow processes
- Analytic formulas for all flow processes not currently available
  - But can use simulation to estimate values

#### Answer:

- If what flows does so
  - through shortest paths only , and
  - can only follow one path at a time
- Then
  - The expected time until arrival at node k is proportional to the closeness centrality of node k
  - The expected number of times that node k is visited is proportional to betweenness centrality

#### **POWER VERSUS CENTRALITY**

#### **DIRECTED DATA**

## **Degree Centrality**

- Concept
  - Number of ties a node has
- Directed case
  - Indegree: colums sums of adjacency matrix
  - Outdegree: row sums
- Scatter plot:

| Indegree → | Authority                  | High<br>involvement |  |  |
|------------|----------------------------|---------------------|--|--|
|            | Low Apprentice involvement |                     |  |  |
|            | Outdegree →                |                     |  |  |



## **Closeness Centrality**

- Concept
  - Distance from/to all other nodes
- Directed
  - Row and column sums of the distance matrix
- Problems
  - Directed graphs usually not connected. Many distances undefined
- Alternative
  - Sum reciprocals the distance matrix instead.
     Substitute zeros whenever a distance is undefined
  - Or count number of nodes reached

#### Betweenness

- Concept
  - How often a node lies along a geodesic path between two others  $\sum_{i=1}^{n} g_{iki}$
- Directed graphs

$$b_k = \sum_{i,j} \frac{g_{ikj}}{g_{ij}}$$

No adjustment needed

## Eigenvector

- Concept
  - A person is central to the extent they are connected to many people who are well connected (to people who are well ... etc)
- Directed graphs
  - (columns) A person has high status to the extent that they are nominated by many people who are themselves frequently nominated
    - Left eigenvector  $\mathbf{x'} \mathbf{A} = \lambda \mathbf{x}$  or  $\mathbf{A'} \mathbf{x} = \lambda \mathbf{x}$
  - (rows) A person has influence to the extent they influence many who themselves influence many
    - Right eigenvector  $A\mathbf{x} = \lambda \mathbf{x}$

## **Eigenvector for Directed graphs**

- Often not calculable
- Can give useless answers
  - Nets I and II give all zeros on left eigenvec for all nodes 2 ^
    - Nodes with 0 indegree have no status to pass along ...
  - In net III, nodes *a*, *b*, *c* and d
     d have same score, even
     though *a* has greater
     indegree



II

Ε

łll

## Alpha Centrality

- Same as eigenvector when applied to symmetric matrices, but better results when applied to non-symmetric matrices
- Basically same as measures by Katz and Hubbell
  - Right alpha centrality:  $\mathbf{x} = \alpha A \mathbf{x} + \mathbf{e} = (I \alpha A)^{-1} \mathbf{e}$ 
    - Assume **e** is vector of 1s
  - left alpha centrality:  $\mathbf{x} = \alpha A^T \mathbf{x} + \mathbf{e} = (I \alpha A^T)^{-1} \mathbf{e}$
- In left (right) alpha centrality ...
  - If  $\alpha$  is positive then a person gets a high score for receiving ties from (sending ties to) people with high scores
  - If  $\alpha$  is negative, then a person gets a high score for receiving ties from (sending ties to) people with low scores

## Katz Influence

- If i does not have a tie to j, i can still influence j by influencing someone who influences someone ... who influences j.
  - more chains from I to j, the more certain the influence,
  - but also the longer the chains the weaker the influence
- Given adjacency matrix R, the number of chains of length k is given by R<sup>k</sup>, so we need a sum like this: R<sup>1</sup> + R<sup>2</sup> + R<sup>3</sup> + ... except we want to weight the longer chains less
- A parameter α<sup>k</sup> (smaller than 1) can be introduced which goes to zero as k approaches infinity
  - $\mathbf{Q} = \alpha^1 \mathbf{R}^1 + \alpha^2 \mathbf{R}^2 + \alpha^3 \mathbf{R}^3 + \dots \alpha^\infty \mathbf{R}^\infty$
  - The row sums of Q give the total influence of a node on the network
- It turns out that when  $\alpha < 1/\lambda_1$  where  $\lambda_1$  is the largest eigenvalue of R, this series converges to  $\mathbf{Q} = (\mathbf{I} \alpha \mathbf{R})^{-1} 1$ , which leads to a row sum that is just 1 less than alpha centrality

## Singular Value Decomposition (SVD)

• Every matrix A can be decomposed as follows:

$$A_{n \times m} = U_{n \times m} D_{m \times m} V_{m \times m}^{T}$$

 We can approximate A with lower dimensionality k << m</li>

$$A_{n \times m} = U_{n \times k} D_{k \times k} V_{m \times k}^{T}$$

- A 1-dimensional solution:
- The u-scores and column scores can be written in terms of each other

D is a diagonal matrix of singular values

 $A = u\lambda^{1/2}v'$ 

 $u_i = \lambda^{-1/2} \sum_i a_{ij} v_j$  $v_j = \lambda^{-1/2} \sum a_{ij} u_i$ 

## Hubs and Authorities

- Run an SVD on an adjacency matrix A, and retain only the first dimension  $A = u\lambda^{1/2}v'$
- The u and v scores measure the extent to which a node is playing the role of a hub or authority respectively
  - The u-score (hub) measures the extent to which the node sends ties to nodes that have high v-scores (are authorities)
  - The v-score (authority) measures the extent to which the node receives ties from nodes with high u-scores (are hubs)

## Supply chain example

• Seller by buyer matrix



#### **KEY PLAYERS**

## Key Player Project Who are the key players in a network?

- It depends on ...
  - whether you are looking for individuals or ensembles
  - the purpose
- On the value of problemcentered research



Funded by the Office of Naval Research Thanks Rebecca Goolsby!

Borgatti, S.P. 2006. Identifying sets of key players in a network. *Computational, Mathematical and Organizational Theory*. 12(1): 21-34
Borgatti, S.P. 2003. The Key Player Problem. Pp. 241-252 in *Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers*, R. Breiger, K. Carley, & P. Pattison, (Eds.), National Academy of Sciences Press.

# Why do we want to know who the key players are?

| We want to <b>remove them</b> – to maximally <b>disrupt</b> the network                          | DISRUPT   |
|--------------------------------------------------------------------------------------------------|-----------|
| We want to <b>help</b> them – in order to make network as a whole<br><b>function better</b>      | ENHANCE   |
| We want to identify key opinion leaders – to influence the network                               | INFLUENCE |
| We want to know who is in the know – so we can question or surveil them                          | LEARN     |
| We want to remove them – to redirect flows in the network toward more convenient players pruning | REDIRECT  |

## Key Player Needs by Field

|                  | DISRUPT                                         | PROTECT                                                       | INFLUENCE                                           | LEARN                                        | REDIRECT                                                   |
|------------------|-------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|------------------------------------------------------------|
| SECURITY         | Who to arrest<br>or discredit to<br>disrupt ops | Who to<br><b>protect</b> among<br>allied group                | Who to turn<br>or plant info<br>with                | Who is best<br>positioned<br>to know<br>most | Who to<br>remove to<br>redirect<br>flows                   |
| PUBLIC<br>HEALTH | Who to<br>immunize or<br>quarantine             |                                                               | Who to select<br>as PHAs for<br>interventions       | Who to<br>study<br>explain<br>spread         |                                                            |
| MANAGE<br>MENT   | Who to hire<br>away from<br>competitor          | Who to give<br>more of a<br>stake in org to<br>avoid turnover | Who to get on<br>board before<br>launching<br>reorg |                                              | Who to<br>add/replace<br>to remove<br>drag on<br>good emps |
| MARKETING        | Identify key<br>critics to<br>silence           | Which happy<br>users to<br>empower                            | Identify key<br>mavens to sell<br>on your stuff     | Identify key<br>informants<br>for focus      |                                                            |

## **KeyPlayer Research Objectives**

- Develop metrics to quantify potential disruption, influence, surveillance etc.
  - Off-the-shelf SNA measures not optimized for these tasks
- Develop combinatorial optimization algorithms and fast heuristics for maximizing metrics given solution parameters
- Predict what happens to the network postintervention

## The Design Issue

- By standard off-the-shelf measures of node centrality, node 1 is the most important player, but deleting it ...
  - does not disconnect the network
- In contrast, deleting node 8 breaks network into two components
  - Yet node 8 is not highest in centrality
- No off-the-shelf centrality measure is optimal for the purpose of disrupting networks
  - Nor any of the other specific purposes



### The Ensemble Issue

Structural redundancy creates need for choosing <u>complementary</u> nodes



• Choosing optimal **set** of *k* players is not same as choosing the *k* best players



#### Disruption Example – health context

- Which two people should be isolated from network to slow the spread of HIV?
  - KeyPlayer algorithm
     identifies the two
     red nodes



whites

Weeks, M.R., Clair, S., Borgatti, S.P., Radda, K., and Schensul, J.J. 2002.

Social networks of drug users in high risk sites: Finding the connections. AIDS and Behavior 6(2): 193-206

#### Caveats

- Strategy of disrupting networks by removing key nodes may be dangerous long-term
  - Ties grow back. Fragmentation strategy may effectively shape enemy networks into something even harder to contain
  - Best used to interrupt particular operation?



#### Caveats

- Strategy of disrupting networks by removing key nodes may be dangerous long-term
  - Ties grow back. Fragmentation strategy may effectively shape enemy networks into something even harder to contain

O

– Best used to interrupt particular operation?



#### Caveats

- Strategy of disrupting networks by removing key nodes may be dangerous long-term
  - Ties grow back. Fragmentation strategy may effectively shape enemy networks into something even harder to contain
  - Math model is limited



## Influence Example – health context



### Influence Example – mgmt context

• Major change initiative is planned. Which small set of employees should we select for intensive indoctrination? in hopes they will diffuse positive attitude/knowledge to others



## **Prospects and Levers**

- Objective
  - Use network influence models to maximize persuasive efforts
  - Illustrate how network perspective can be used to work with/through networks rather than against them
- Assumptions:
  - All nodes can be measured with respect to friendliness or unfriendliness to our cause (can be yes/no as well)
  - We know who influences whom
    - E.g., among physicians we have who receives referrals from whom

Borgatti, S.P. and Plant, E. 2008. Prospects and Levers. To be submitted to Social Networks

### Prospects

- Prospects are "unfriendly" nodes that are surrounded by (influenced by) "friendlies"
  - By activating the nearby friendlies, we can try to "turn" the prospect
- Simplest formulation:  $p_i = u_i \sum_{j} a_{ji} f_j$ 
  - $u_i$  refers to unfriendliness of prospect *i*,  $a_{ji}$  indicates extent that *j* influences *i*,  $f_j$  gives the friendliness of node *j*. A node *i* gets a high score if currently unfriendly but surrounded by many friendlies

neighborhood

- Metrics of prospectness provide a way of prioritizing who to go after first
  - Identifying the low hanging fruit

#### Levers

- Levers are friendly nodes that have influence ties to unfriendly nodes.
  - If activated, can be directed to try to "turn" the unfriendlies who are influenced by them
  - Metrics identify who to activate (e.g., by incentivizing) in order maximize contagion effect per resource dollars
- Simplest formulation:  $l_i = f_i \sum a_{ij} u_j$
- Incorporating indirect influence:  $l_i = f_i \sum \alpha^{d_{ij}} a_{ij} u_j$

 $u_i$  refers to unfriendliness of prospect *i*,  $a_{ji}$  indicates extent that *j* influences *i*,  $f_j$  gives the friendliness of node *j*.  $d_{ij}$  is the length of the shortest path from *i* to *j*.  $\alpha$  is a constant controlling attenuation of influence across long paths.