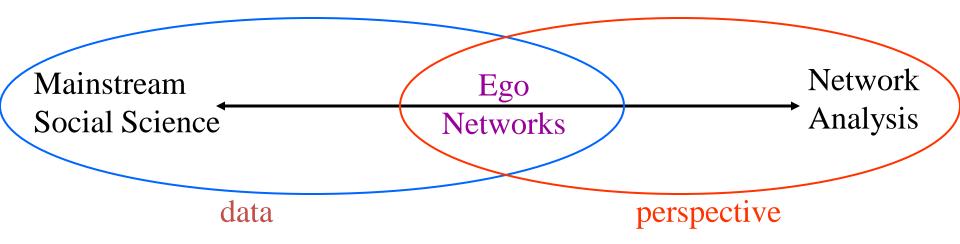

#### Ego Network Analysis I


Steve Borgatti MGT 780 Social Network Analysis

## definition

- Full network
- Ego network (aka personal network, firstorder zone, 1-neighborhood, etc.)
  - Ego (the respondent)
  - Alters (actors ego has ties with)\_
  - Ties among the alters



## A compromise



• Combine the perspective of network analysis with the data of mainstream social science

# EGO NET RESEARCH DESIGN AND DATA COLLECTION

## sampling

- Same as ordinary social science studies
- Random/probability samples

#### sources

- Every full network contains every node's ego network
- (Ideally random) sample of nodes
   Each sampled node called an "ego"
- Each is asked for set of contacts called "alters"
- Ego also asked (usually) about ties among alters
- Connections between ego's or between alters of different egos are not recorded
  - Each ego is a world in itself

## Survey data collection

 Each ego ("index person") is asked for set of contacts called "alters"

Don't need real or complete names

- Ego asked about the attributes of each alter
- Ego asked about various dimensions of their relationship to each alter
- Ego also asked (usually) about ties among alters
- Connections between egos or between alters of different egos are not obtained
  - Each ego is a world in itself

#### Name generator

- Series of open-ended questions asking about the people in a person's life
  - Don't need real or complete names
  - (variant is a position generator, which asks about the types of people in resp's life)
- End result is a list of unique names that is compiled into a roster

#### Name interpreter

- For each alter generated by the name generator ask two sets of questions:
  - Attributes of each alter age, sex, social class, etc.
  - Nature of the relationship with alter
    - Friends? Coworkers? Kin? How long known? Frequency of communication?
    - These questions can be same as in name generator. Difference is that the resp is reacting to roster of names, eliminating recall issues

#### Ego net structure

- (optional) Ask ego to indicate the ties among their alters
  - Typically a reduced set of ties, such as whether they know each other or how often they communicate with each other

#### ANALYZING EGO NET DATA

## Network size

- Same as degree
- Could be asked more simply, but less accurately, by 'how many friends have you got?'
- Well-correlated with lots of outcomes

## Strength

- Average/median/maximum strength of tie with others
- How well connected to people in your neighborhood, department, etc.
- Strength of weak ties theory

## Reciprocity

- Extent to which, when ego sends tie to alter, alter responds in kind
- Status differences?
- Cultural differences in meaning of social relations?

## Composition

- How many of X kind of alters are in ego's network neighborhood
  - Frequency or proportion of women among ego's friends
  - Number of gay people among ego's kin

## Heterogeneity

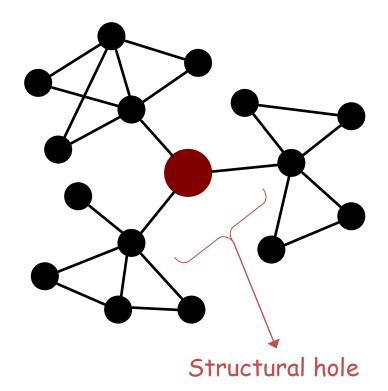
- Given attribute X, and relation Y how diverse is ego's personal network?
  - Friends mostly white? Does ego talk regularly with people from different walks of life?
  - How much variance in age in ego's friends?
- Categorical versus continuous attributes
  - For continuous vars, just use standard deviation

## **Categorical Heterogeneity**

- Given attribute X, and relation Y how diverse is ego's personal network?
  - Friends mostly white? Does ego talk regularly with people from different walks of life?
- Herfindahl, Hirschman, Blau heterogeneity measure H = 1-∑<sub>k</sub> p<sub>k</sub><sup>2</sup>
   − p<sub>k</sub> gives proportion of alters that fall into category k
- IQV normalization of H so that it can achieve max value of 1  $1 \sum p_k^2$

$$IQV = \frac{1 - \sum_{k} p_k}{1 - \frac{1}{k}}$$

## **Egonet Homophily**

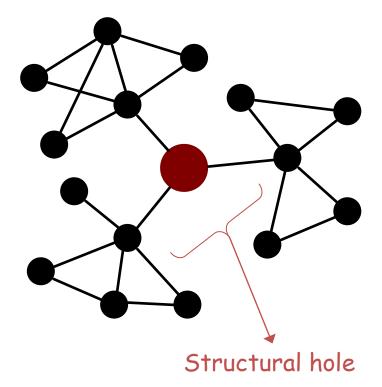

- Concept
  - To what extent an ego's alters are like ego on a given attribute
- Approach
  - Construct relational contingency table for each node
- Measures - Pct homophilous (%H) = 0.67 R  $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 5 & 9 \\ 1 & 0 \\ R & 0 & 5 & 9 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0$ 
  - E-I index = -0.333
  - PBSC = 0.24

# "Quality"

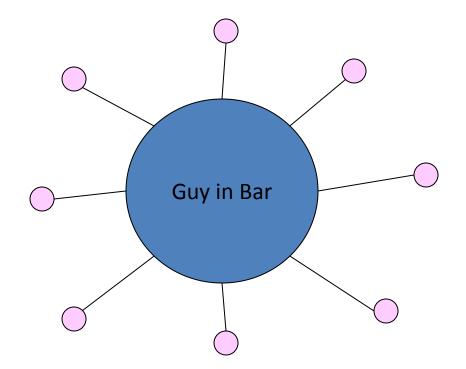
- Average/median/max of ego's alters' attributes
- E.g.,
  - How wealthy are ego's friends?
  - How prestigious?
- Lin social resource theory / social capital
  - You are as good as your network

## Structural holes

- Burt '92
- A theory of individual social capital
  - Predicting promotion speed
- Not based on the attributes of ego's alters, but on the structure of the ego network

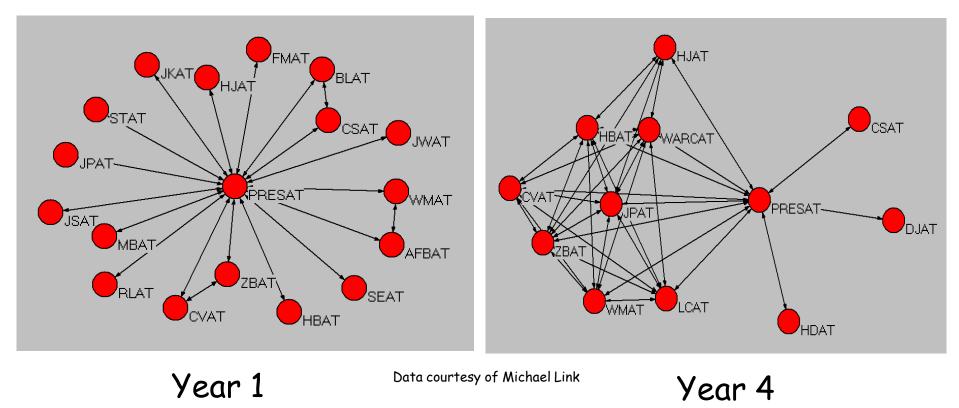



## Structural Holes


• Basic idea

Lack of ties among alters may benefit ego

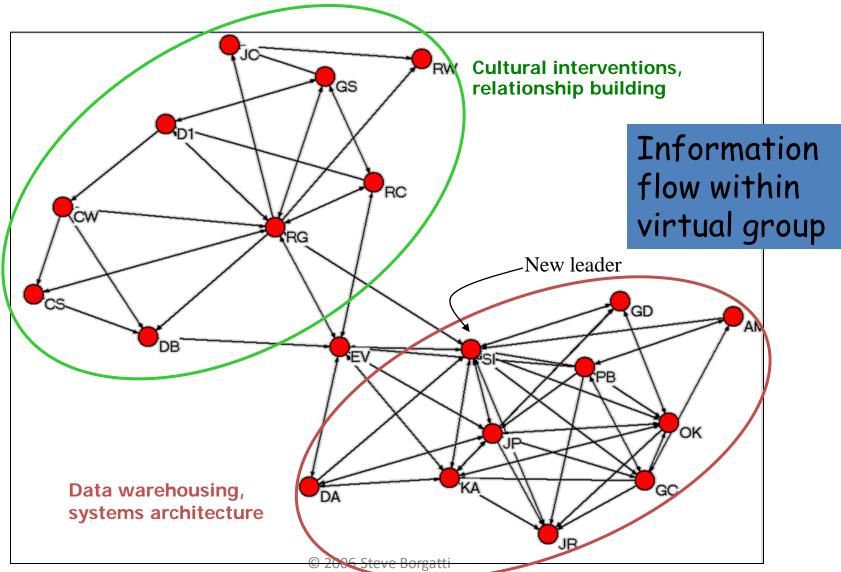
- Benefits
  - Autonomy
  - Control
  - Information




#### Autonomy



#### **Control Benefits of Structural Holes**


#### White House Diary Data, Carter Presidency



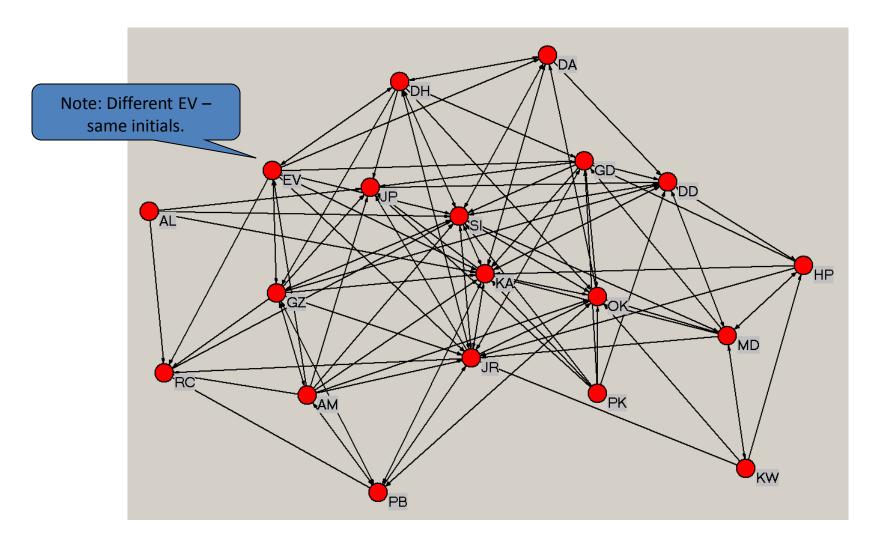
## **Information Benefits**

- (Assume a fixed relational energy budget)
- Direct connection to outsiders means earlier, more actionable knowledge
- Bridging position provides control of information, agenda
- Value from
  - Bringing across ready-made solutions
  - Analogizing from others' situations
  - Synthesizing others' thinking

#### **Information & Success**



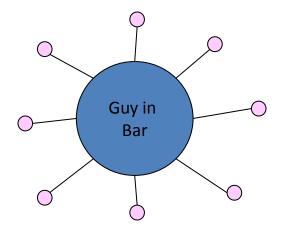
Cross, Parker, & Borgatti, 2002. Making Invisible Work Visible. California Management Review. 44(2): 25-46

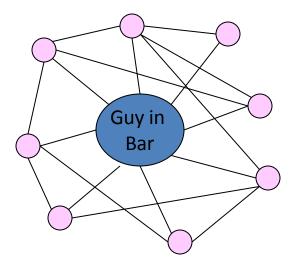

## Changes Made

- Cross-staffed new internal projects

   white papers, database development
- Established cross-selling sales goals
  - managers accountable for selling projects with both kinds of expertise
- New communication vehicles

   project tracking db; weekly email update
- Personnel changes

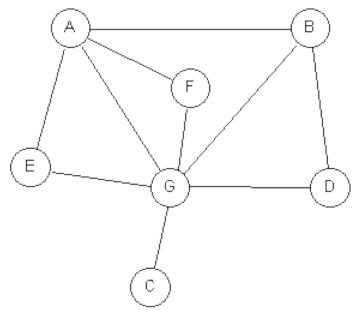

#### 9 Months Later




Cross, Parker, & Borgatti, 2002. Making Invisible Work Visible. California Management Review. 44(2): 25-46 © 2006 Steve Borgatti

## **Measures of Structural Holes**

- Burt's effective size
- Burt's constraint






## **Effective Size**

 $m_{jq} = j$ 's interaction with q divided by j's strongest relation with anyone  $p_{iq} =$  proportion of i's energy invested in relation with q

$$ES_{i} = \sum_{j} \left[ 1 - \sum_{q} p_{iq} m_{jq} \right], \quad q \neq i, j$$
$$ES_{i} = \sum_{j} 1 - \sum_{j} \sum_{q} p_{iq} m_{jq}, \quad q \neq i, j$$

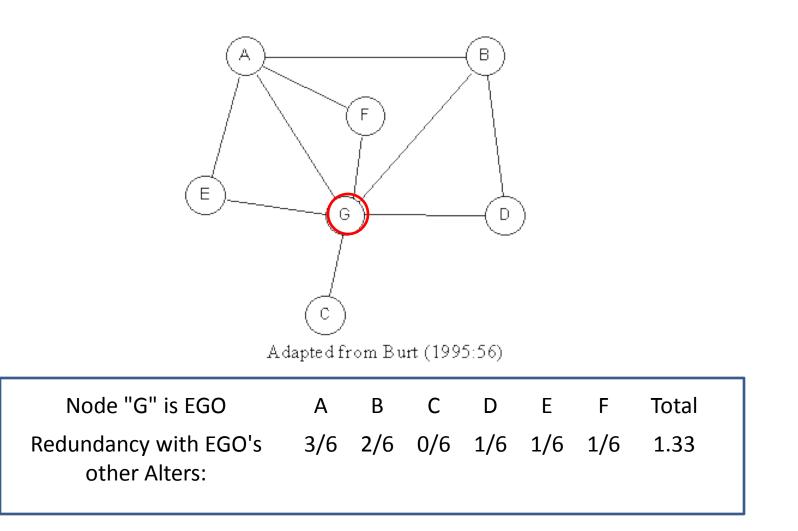


• Effective size is network size (N) minus redundancy in network

Figure 1. Adapted from Burt (1995:56)

## Effective Size in 1/0 Data

- $M_{jq} = \mathbf{j}'$ s interaction with q divided by  $\mathbf{j}'$ s strongest tie with anyone
  - So this is always 1 if j has tie to q and 0 otherwise
- P<sub>ig</sub> = proportion of i's energy invested in relationship with q
  - So this is a constant 1/N where N is ego's network size


$$ES_{i} = \sum_{j} \left[ 1 - \sum_{q} p_{iq} m_{jq} \right], \quad q \neq i, j$$

$$ES_{i} = \sum_{j} \left[ 1 - \frac{1}{n} \sum_{q} m_{jq} \right], \quad q \neq i, j$$

$$ES_{i} = \sum_{j} 1 - \sum_{j} \frac{1}{n} \sum_{q} m_{jq}, \quad q \neq i, j$$

$$ES_i = n - \frac{1}{n} \sum_{j} \sum_{q} m_{jq}, \quad q \neq i, j$$

#### **Effective Size**



Effective Size of G = Number of G's Alters – Sum of Redundancy of G's alters = 6 - 1.33 = 4.67

## Constraint

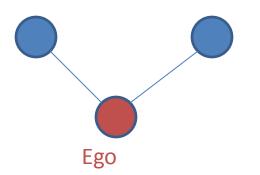
Mjq= j's interaction with q divided by j's strongest relationship with anyone So this is always 1 if j has tie to q and 0 otherwise

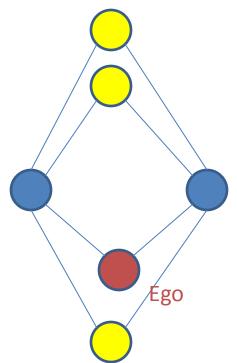
P<sub>iq</sub> = proportion of i's energy invested in relationship with q So this is a constant 1/N where N is network size

$$c_{ij} = p_{ij} + \sum_{q} p_{iq} m_{qj}, \ q \neq i, j$$

- Alter j constrains i to the extent that
  - i has invested in j
  - i has invested in people (q) who have invested heavily in j. That is, i's investment in q leads back to j.
- Even if i withdraws from j, everyone else in i's network is still invested in j

## Sized by Constraint





## Controlling for size

• Should one control for degree when using measures of structural holes?

## Limitations of burt measures

• What if ego is not the only broker between alter 1 and alter 2





## Ego betweenness

- The number of points that ego gets for being between two others is inverse function of the number of other members of ego's neighborhood that are also between two others
  - G is between E and B, but so is A. So G only gets a half a point of brokerage

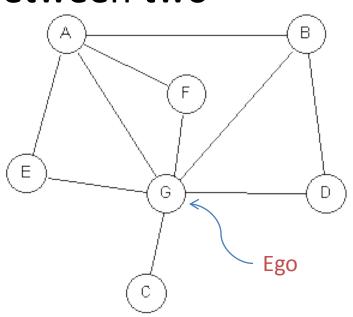



Figure 1. Adapted from Burt (1995:56)

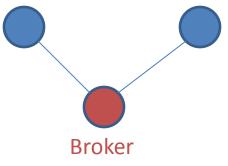
Do actors need to be aware of structural holes to benefit from them?

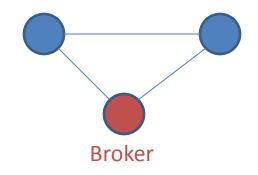
- For information benefits, no
  - Although it might help to recognize that your group 1 friends have solutions that group 2 doesn't
- For control benefits, more so

## Ajay's Sample

- College Sorority
- N = 137
- 75% response rate

#### Ego Network Structure and Perceived Ego Network Structure Descriptive Statistics


|                             | Means<br>(Std. Dev.) | 1     | 2     | 3     | 4   | 5   |
|-----------------------------|----------------------|-------|-------|-------|-----|-----|
| 1.Density                   | .36<br>(.27)         |       |       |       |     |     |
| 2.Bridging                  | .46<br>(.21)         | 77*** |       |       |     |     |
| 3.Eigenvector               | 17.96<br>(8.11)      | 34*** | .71** |       |     |     |
| 4. Perceived<br>Density     | 3.81<br>(.70)        | .10   | .10   | .26*  |     |     |
| 5. Perceived<br>Bridging    | 3.09<br>(.98)        | 23**  | .27** | .20*  | 02  |     |
| 6. Perceived<br>Eigenvector | 2.21<br>(.59)        | 04    | .15   | .30** | .16 | .07 |


## Observations

- Different measures of objective (inter-subjective, to be more precise) ego network structure are modestly correlated. But different measures of perceived ego network structure are not.
- Greater variance in measures of objective ego network structure than in measures of perceived ego network structure.
- In analyses not reported here: subjective measures of network structure are significant predictors of member satisfaction with how the organization is run; objective measures are not.
- Potentially sobering implications for validity of how ego network data are often collected (i.e., based solely on ego's reports)

## Brokerage as process

- So far we have identified brokerage with a particular network shape
- But brokerage can also occur when the brokered are already connected
  - Catalyst to do something
- Marriage and real estate brokers both exist to create a tie of some kind



