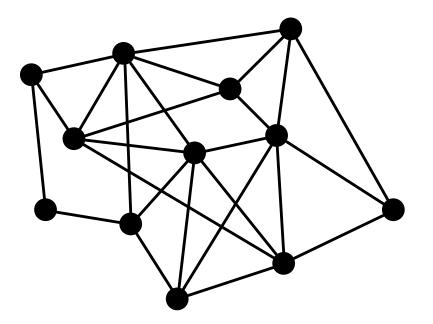

Graph Invariants


Order & Size

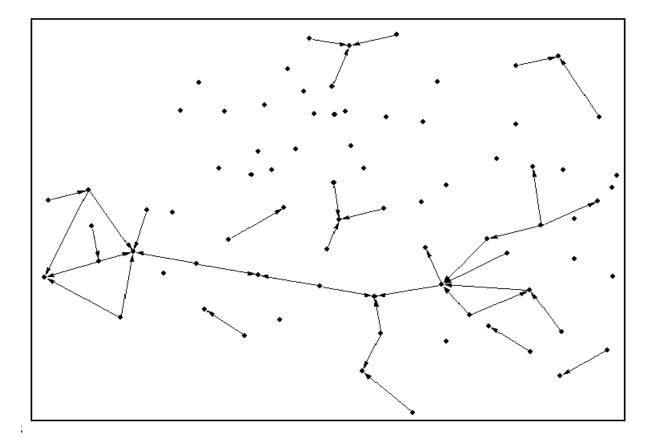
- Order: number of nodes in network
- Size: number of ties in network

Density

• Number of ties, expressed as percentage of the number of ordered/unordered pairs

Low Density (25%) Avg. Dist. = 2.27 High Density (39%) Avg. Dist. = 1.76

-3-Copyright © 2006 Steve Borgatti. All rights reserved.

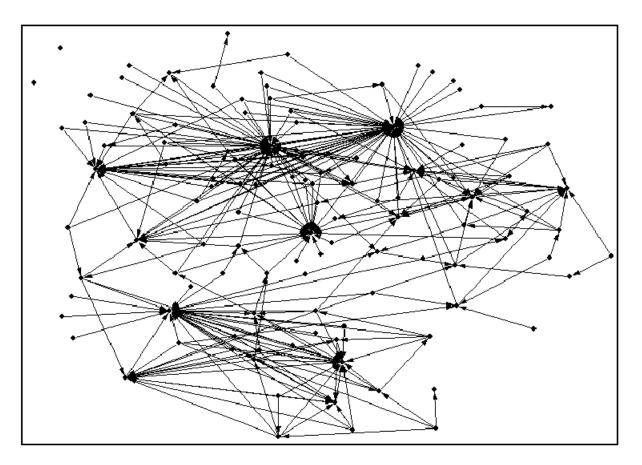

Density

Number of ties divided by number possible

	Reflexive	Non-Reflexive
Undirected	$=\frac{T}{n^2/2}$	$=\frac{T}{n(n-1)/2}$
Directed	$=\frac{T}{n^2}$	$=\frac{T}{n(n-1)}$

T = number of ties in network n = number of nodes

Help With the Rice Harvest



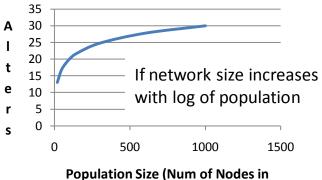
Village 1

-5-Copyright © 2006 Steve Borgatti. All rights reserved.

Data from Entwistle et al

Help With the Rice Harvest

Which village is more likely to survive?

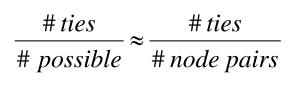

Village 2

-6-Copyright © 2006 Steve Borgatti. All rights reserved.

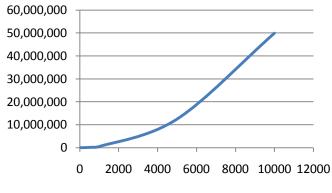
Data from Entwistle et al

Density in large networks

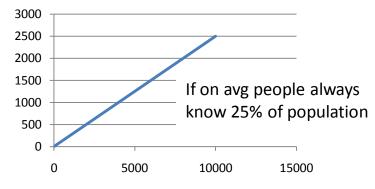
Number of Alters



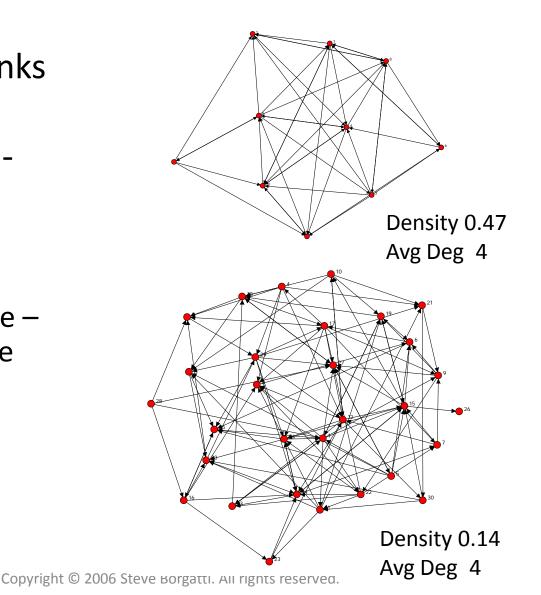
Network)


Network Density as a function of Number of Alters

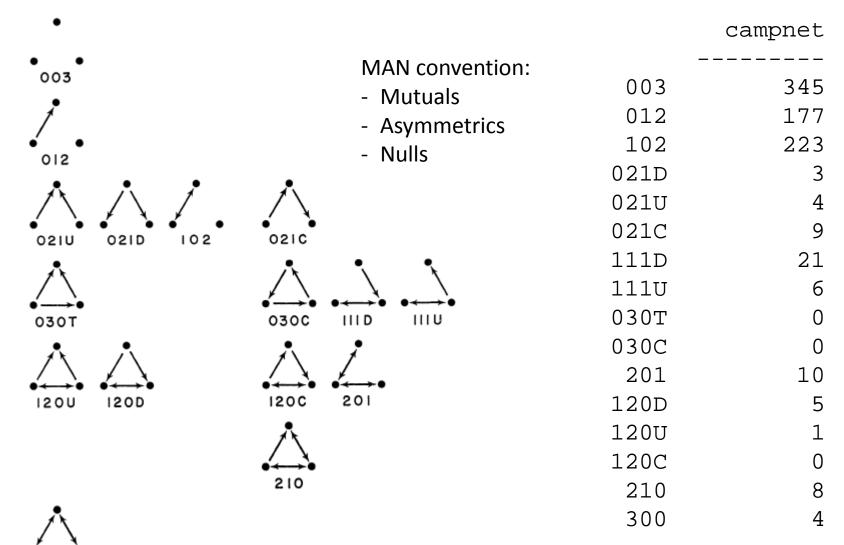
Typical # of Alters


Population	.25P	.25p+10	log(p)			
20	0.263	0.789	0.685			
50	0.255	0.459	0.347			
100	0.253	0.354	0.202			
150	0.252	0.319	0.146			
300	0.251	0.284	0.083			
600	0.250	0.267	0.046			
1000	0.250	0.260	0.030			
5000	0.250	0.252	0.007			
10000	0.250	0.251	0.004			

Pairs

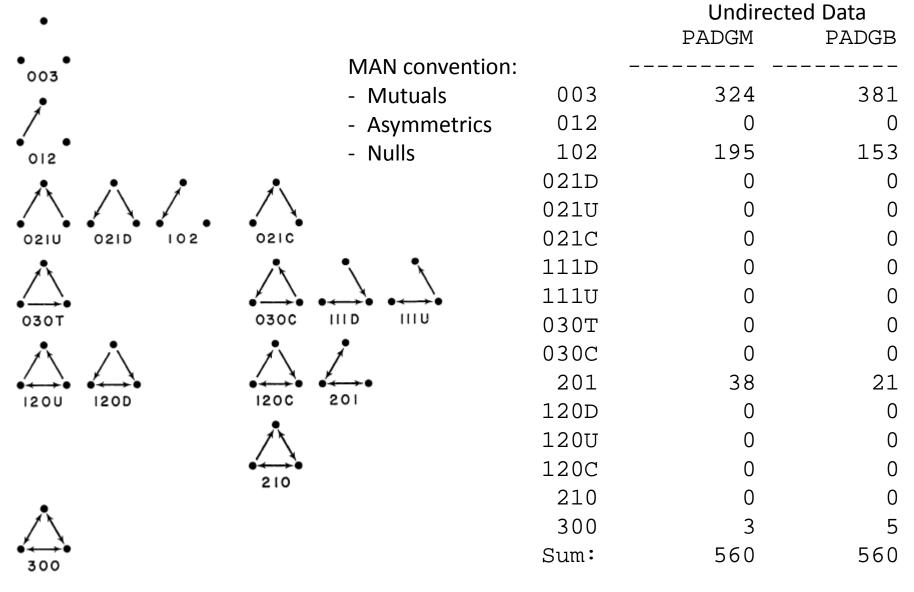


Avg Number of Alters



Average Degree

- Average number of links per person
- Is same as density*(n-1), where n is size of network
 - Density is just
 normalized avg degree –
 divide by max possible
- Often more intuitive than density



Triad Census

300

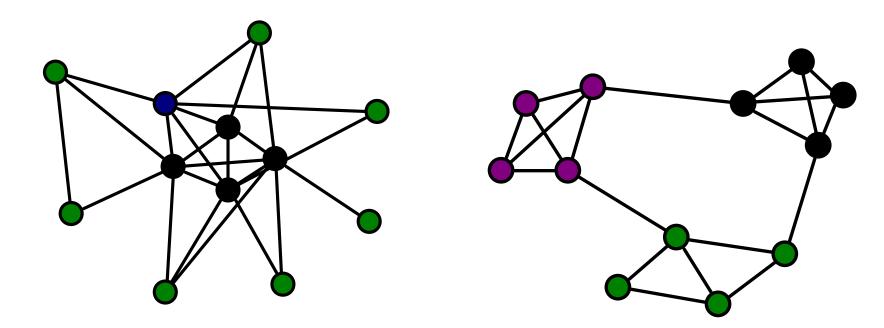
Triad Census

Transitivity

- If x→y, y→z, and x→z then x,y,z form a transitive triple
- Transitivity = no. of transitive triples divided by no. of triples in which x→y and y→z

- Aka, weighted clustering coefficient

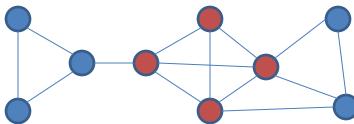
• Measure of local density and clumpiness


Graph cohesion measures derived from geodesic distances among pairs

. . . .

									MIC											
	HOLI	LBRA	CAR	PA		JEN	PAU		HAE			DO	JOH	HAR	GER	STE	BER	RUS		
	Y	ZEY	OL	Μ	PAT	NIE	LINE	ANN	L	BILL	LEE	Ν	Ν	RY	Υ	VE	Т	S		
HOLLY	0	4	2	1	1	2	2	2	1	2	4	1	3	1	2	3	4	3		
BRAZEY	4	0	5	5	5	6	4	5	3	4	1	4	3	4	2	1	1	2		Geo
CAROL	2	5	0	1	1	2	1	2	3	4	5	3	2	3	3	4	4	3		Dist
PAM	1	5	1	0	2	1	1	1	2	3	5	2	2	2	3	4	4	3		
PAT	1	5	1	2	0	1	1	2	2	3	5	2	2	2	3	4	4	3	Mean	2.66
JENNIE	2	6	2	1	1	0	2	1	3	4	6	3	3	3	4	5	5	4	Std Dev	1.26
PAULINE	2	4	1	1	1	2	0	1	3	4	4	3	1	3	2	3	3	2	Sum	814
ANN	2	5	2	1	2	1	1	0	3	4	5	3	2	3	3	4	4	3		
MICHAEL	. 1	3	3	2	2	3	3	3	0	1	3	1	2	1	1	2	3	2	Variance	1.60
BILL	2	4	4	3	3	4	4	4	1	0	4	1	3	1	2	3	4	3	SSQ	2654
LEE	4	1	5	5	5	6	4	5	3	4	0	4	3	4	2	1	1	2	-	488.6
DON	1	4	3	2	2	3	3	3	1	1	4	0	3	1	2	3	4	3	MCSSQ	5
JOHN	3	3	2	2	2	3	1	2	2	3	3	3	0	3	1	2	2	1		_
HARRY	1	4	3	2	2	3	3	3	1	1	4	1	3	0	2	3	4	3	Euc Norm	51.52
GERY	2	2	3	3	3	4	2	3	1	2	2	2	1	2	0	1	2	1	Minimum	1
STEVE	3	1	4	4	4	5	3	4	2	3	1	3	2	3	1	0	1	1	Maximum	C
BERT	4	1	4	4	4	5	3	4	3	4	1	4	2	4	2	1	0	1	Maximum	6
RUSS	3	2	3	3	3	4	2	3	2	3	2	3	1	3	1	1	1	0	N of Obs	306

Average Distance


Average geodesic distance between all pairs of nodes

avg. dist. = 2.4

Radius and diameter

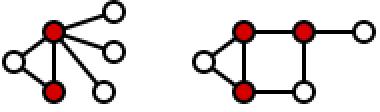
- The eccentricity ε of a vertex v is the greatest distance between v and any other vertex.
- The **radius** of a graph is the minimum eccentricity of any vertex.
- The diameter of a graph is the maximum eccentricity of any vertex in the graph. That is, it is the greatest distance between any pair of vertices.

Breadth

- Distance-Weighted Fragmentation
- Use average of the reciprocal of distance

- letting
$$1/\infty = 0$$

$$B = 1 - \frac{\sum_{i,j} \frac{1}{d_{ij}}}{n(n-1)}$$

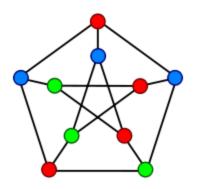

- Bounds
 - lower bound of 0 when every pair is adjacent to every other (entire network is a clique) – minimum breadth
 - upper bound of 1 when graph is all isolates

-15-Copyright © 2006 Steve Borgatti. All rights reserved.

Vertex Covering Number

Vertex cover of a graph G is a set of vertices
 C such that each edge of G is incident to at
 least one vertex in C

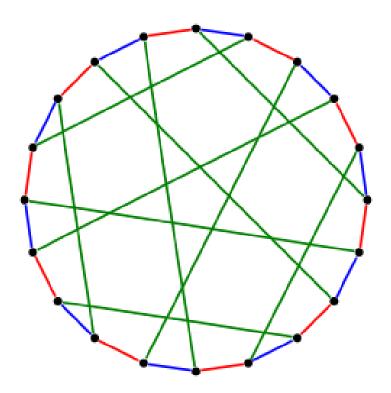
- minimum vertex cover is a vertex cover of smallest possible size.
- The vertex cover number τ is the size of a minimum vertex cover



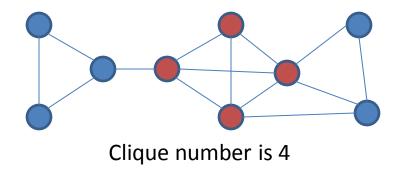
Edge Covering Number

- edge cover of a graph G is a set of edges C such that each vertex is incident with at least one edge in C.
- **minimum edge covering** is an edge covering of smallest possible size
- edge covering number $\rho(G)$ is the size of a minimum edge covering

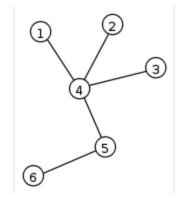
Chromatic number


 coloring the vertices of a graph such that no two adjacent vertices share the same color

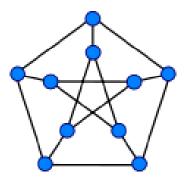
Smallest coloring has 3 colors


Chromatic index (edge chromatic number)

 coloring the edges of a graph such that no two adjacent edges share the same color


Clique Number

- The clique number ω(G) of a graph G is the number of vertices in the largest clique in G
 - Clique is a maximal set of nodes that is complete (every member has tie to every other member)
 - Maximality means no other node could be added without violating the completeness condition


Independent sets

- An **independent set**, or *coclique*, is a set of vertices of which no pair is adjacent
- The independence number α(G) of a graph G is the size of a largest independent set of G

Girth

- **girth** of a graph is the length of a shortest cycle contained in the graph
 - If the graph does not contain any cycles, its girth is defined as infinite

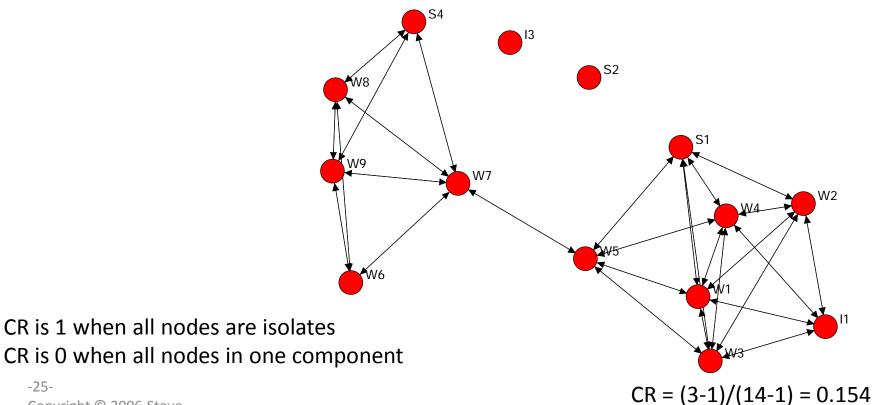
Girth is 5

Reciprocity & Symmetry

 Reciprocity is the proportion of outgoing ties that are matched by an incoming tie from the same person

$$r = \frac{a}{a+b+c} \qquad i \text{ to } j \qquad \begin{array}{c} 1 & 0 \\ 1 & a & b \\ 0 & c & d \end{array}$$

 Symmetry is the proportion of cells in the adjacency matrix such that x_{ii} = x_{ii}

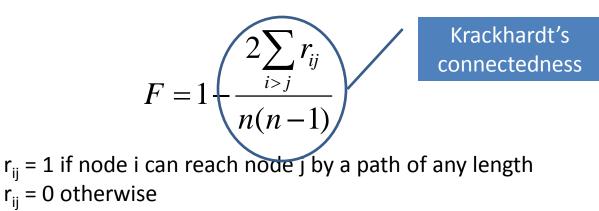

$$s = \frac{a+d}{a+b+c+d}$$

Fragmentation Measures

- Component ratio
- F measure of fragmentation
 - Same as 1-connectivity
- Breadth (Distance-weighted fragmentation) B

Wholeness (aka Component Ratio (CR))

 No. of components minus 1 divided by number of nodes minus 1



Copyright © 2006 Steve Borgatti. All rights reserved.

-25-

F Measure of Fragmentation

• (undirected formula) Proportion of pairs of nodes that are unreachable from each other

- If all nodes reachable from all others (i.e., one component), then F = 0
- If graph is all isolates, then F = 1

Computational Formula for F Measure

 No ties across components, and all reachable within components, hence can express in terms of size of components

$$F = 1 - \frac{\sum_{k} s_k (s_k - 1)}{n(n-1)}$$

 S_k = size of kth component

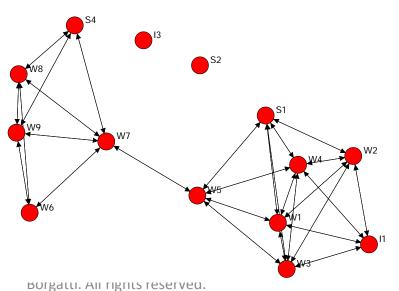
-27-Copyright © 2006 Steve Borgatti. All rights reserved.

Heterogeneity/Concentration

• Sum of squared proportion of nodes falling in each component, where s_k gives size of kth component:

$$H = 1 - \sum_{k} \left(\frac{s_k}{n}\right)^2$$

- Maximum value is $1-1/n^{k}$
- Can be normalized by dividing by 1-1/n. If we do, we obtain the F measure

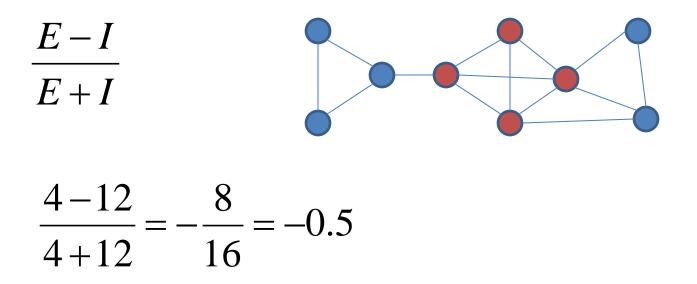

$$F = 1 - \frac{\sum_{k} s_k (s_k - 1)}{n(n-1)}$$

Copyright © 2006 Steve Borgatti. All rights reserved.

Heterogeneity Example

Games Data

Comp	Size	Prop	Prop^2
1	1	0.0714	0.0051
2	1	0.0714	0.0051
3	12	0.8571	0.7347
	14	1.0000	0.7449



Heterogeneity = 0.255

ATTRIBUTE SENSITIVE PROPERTIES

E-I homophily index

- Krackhardt & Stern
 - Number of External ties minus number of Internal ties as a proportion of all ties

Set-up for homophily measures

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

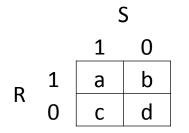
2

2

• Given

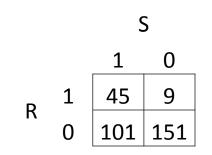
A social relation R

A categorical attribute vector a


Construct

- Similarity relation S in which $s_{ij} = 1$ if $a_i = a_j$, and $s_{ij} = 0$ otherwise

S


Homophily set-up - cont

Construct "relational contingency table"

R = the data – the social relation S = similarity – is 1 if same attrib value

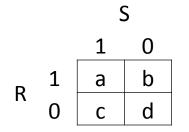
• Campnet dataset:

E-I index

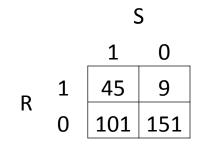
- Krackhardt & Stern
 - Number external ties minus number of internal ties as a proportion of all ties

$$\begin{array}{c|c} & S \\ 1 & 0 \\ R & 1 & a & b \\ 0 & c & d \end{array} \qquad EI = \frac{b-a}{b+a}$$

Negative values indicated greater homophily


• Campnet

S


EI = -0.667

Pct homophilous matches (H%)

• H% = a/(a+b)

• Campnet dataset

H% = 0.83

Point bi-serial correlation (pbsc) approach

• Take into account non-choices as well:

$$R \stackrel{1}{} 0 \qquad r(R,S) = \frac{ad - bc}{\sqrt{(a+c)(b+d)(a+b)(c+d)}}$$

• Campnet dataset:

Matrix Correlation

 The pbsc measure is the same as a QAP correlation of the two dyadic variables R and S

r(R,S) = 0.33

fffffffmmmmmmmmm	fffffffmmmmmmmmm
f 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0	f 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0	f 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0	f 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0	f 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
f 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	f 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0	f 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
f 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	f 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	f 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
m 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0	m 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
m 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0	m 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
m 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0	m 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
m 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0	m 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
m 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1	m 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
m 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0	m 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
m 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1	m 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
m 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1	m 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
m 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1	m 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
$m \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	m 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
R	S

Density Tables

- Concept
 - Number of ties within and between groups
 - Called density when expressed as a function of the number possible

	BHS	CCG	DCL	ES	HEW	IS	MS	SRG	STAT	TAS	Ν
BHS	1613	356	239	1601	717	74	862	231	576	239	178
CCG	356	42	272	329	206	59	228	32	58	231	15
DCL	239	272	2117	521	616	844	1005	61	79	1541	177
ES	1601	329	521	968	445	117	712	119	326	416	146
HEW	717	206	616	445	374	64	380	67	161	245	89
IS	74	59	844	117	64	188	159	16	15	397	52
MS	862	228	1005	712	380	159	666	84	263	845	134
SRG	231	32	61	119	67	16	84	15	49	32	20
STAT	576	58	79	326	161	15	263	49	62	88	19
TAS	239	231	1541	416	245	397	845	32	88	1397	130
Ν	178	15	177	146	89	52	134	20	19	130	960

	BHS	CCG	DCL	ES	HEW	IS	MS	SRG	STAT	TAS
BHS	0.10	0.13	0.01	0.06	0.05	0.01	0.04	0.06	0.17	0.01
CCG	0.13	0.40	0.10	0.15	0.15	0.08	0.11	0.11	0.20	0.12
DCL	0.01	0.10	0.14	0.02	0.04	0.09	0.04	0.02	0.02	0.07
ES	0.06	0.15	0.02	0.09	0.03	0.02	0.04	0.04	0.12	0.02
HEW	0.05	0.15	0.04	0.03	0.10	0.01	0.03	0.04	0.10	0.02
IS	0.01	0.08	0.09	0.02	0.01	0.14	0.02	0.02	0.02	0.06
MS	0.04	0.11	0.04	0.04	0.03	0.02	0.07	0.03	0.10	0.05
SRG	0.06	0.11	0.02	0.04	0.04	0.02	0.03	0.08	0.13	0.01
STAT	0.17	0.20	0.02	0.12	0.10	0.02	0.10	0.13	0.36	0.04
TAS	0.01	0.12	0.07	0.02	0.02	0.06	0.05	0.01	0.04	0.17

Densities