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Introduction

• In social network analysis, we draw on three 
major areas of mathematics regularly:
– Relations

• Branch of math that deals with mappings between sets, such 
as objects to real numbers (measurement) or people to 
people (social relations)

– Matrix Algebra
• Tables of numbers
• Operations on matrices enable us to draw conclusions we 

couldn’t just intuit
– Graph Theory

• Branch of discrete math that deals with collections of ties 
among nodes and gives us concepts like paths



BINARY RELATIONS



Binary Relations

• The Cartesian product S1×S2 of two sets is the 
set of all possible ordered pairs (u,v) in which 
u∈S1 and v∈S2
– Set {a,b,c,d}

– Ordered pairs:
• (a,a), (a,b), (a,c), (a,d)

• (b,a),(b,b), (b,c), (b,d)

• (c,a),(c,b), (c,c), (c,d)

• (d,a),(d,b),(d,c),(d,d)



Binary Relations

• Given sets S1 and S2, a binary relation R is a 
subset of their Cartesian product

Note: S1 and 
S2 could be 
the same set

S1

S2



Relational Terminology

• To indicate that “u is R-related to v” or “u is 
mapped to v by the relation R”, we write
– (u,v) ∈ R, or
– uRv

• Example: If R is “likes”, then 
– uRv says u likes v

– (jim,jane) ∈ R says jim likes jane

u v
likes



Functions

• A function is a relation that is many to one. If F 
is a function, then there can only be one v 
such that uFv

• Function form
– v = F(u) means that uFv

– So if F is “likes” then v=F(u) says that the person u 
likes is v. That is uFv, or u likes v



Properties of Relations

• A relation is reflexive if for all u, (u,u)∈R
– E.g., suppose R is “is in the same room as”
– u is always in the same room as u, so the relation is reflexive

• A relation is symmetric if for all u and v, uRv implies vRu
– If u is in the same room as v, then it always true that v is in the same 

room as u. So the relation is symmetric
• A relation is transitive if for all u,v,w, the presence of uRv together 

with vRw implies uRw
– If u is in the same room as v, and v is in the same room as w, then u is 

necessarily in the same room as w
– So the relation is transitive

• A relation is an equivalence if it is reflexive, symmetric and 
transitive
– The relation “is in the same room as” is reflexive, symmetric and 

transitive



Equivalences and Partitions

• A partition P of a set S is an exhaustive set of 
mutually exclusive classes such that each member of 
S belongs to one and only one class
• E.g., any categorical variable like gender or cluster id

– We use the notation p(u) to indicate the class that 
item u belongs to in partition P

• Equivalence relations give rise to partitions 
and vice-versa
– The relation “is in the same class as” is an 

equivalence relation



Operations

• The converse or inverse of a relation R is denoted 
R-1 (but we will often use R’ instead)
– For all u and v, (u,v)∈R-1 if and only if (v,u)∈R
– The converse reverses the direction of the mapping

• Example
– If R is represents “gives advice to”, then 

• uRv means u gives advice to v, and 

• uR-1v indicates that v gives advice to u

• If R is symmetric, then R = R-1

Important note: In the world of matrices, the relational converse corresponds to the  matrix 
concept of a transpose, denoted X’ or XT, and not to the matrix inverse, denoted X-1. The -1 

superscript and the term “inverse” are unfortunate false cognates.



Relational Composition

• If F and E are binary relations, then their composition F°E is a 
new relation such that (u,v)∈F°E if there exists w such that 
(u,w)∈F and (w,v)∈E. 
– i.e., u is F°E-related to v if there exists an intermediary w such that 

u is F-related to w and w is E-related to v
• Example: 

– Suppose F and E are friend of and enemy of, respectively
– u F°E v means that u has a friend who is the enemy of v

• This “right” notation* which means rightmost relations are applied 
first
– start from the end and ask “what is v to u?”
– u F°E v means that v is the enemy of a friend of u

• In functional notation v=E(F(u))

*Important note: Many authors reverse the meaning of F°E, writing it as E°F. This is 
known as “left” convention, meaning that the left relation is applied first. So uF°Ev
would mean v is the friend of an enemy of u. That is v = F(E(u))



More Relational Composition

Assume F is “likes”
• u F°F v  means u likes someone who likes v (v is 

liked by someone who is liked by u)
– If  uFv = u F°F v for all u and v, we have transitivity

• u F°F-1 v means u likes someone who is liked by v
– Both u and v like w

• u F-1°F v means u is liked by someone who likes v 
(v is liked by someone who likes u)
– Both u and v are liked by w



Relations can relate different kinds of 
items

• “is tasked with” relates persons to tasks they 
are responsible for
– uTv means person u is responsible for task v

• “controls resource” relates persons to 
resources they control
– uCv means person u controls resource v

• “requires resource” relates tasks to the 
resources needed to accomplish them
– uRv means task u requires resource v 



These kinds of relations can be 
composed as well

• If T is “tasked with”, C is “controls”, and R is 
“requires”, then
– uT°Rv means person u is tasked with a task that 

requires resource v

– uT°R°C-1v means person u is tasked with a task 
that requires a resource that is controlled by 
person v

• i.e., u is dependent on v to get something done



Relational Equations

• F = F°F means that uFv if and only if uF°Fv, for all 
u and v
– Friends of friends are always friends, and vice versa
– Transitivity plus embeddedness

• F = E°E means that uFv if and only if uE°Ev
– Enemies of enemies are friends, and all friends have 

common enemies
• E = F°E = E°F means that uEv if and only if uF°Ev

and uE°Fv
– Both enemies of friends and friends of enemies are 

enemies, and vice-versa



Matrix Algebra

• In this section, we will cover:
– Matrix Concepts, Notation & Terminologies

– Adjacency Matrices

– Transposes

– Aggregations & Vectors

– Matrix Operations

– Boolean Algebra (and relational composition)



Matrices

• Matrices are simply tables. Sometimes 
multidimensional

• Symbolized by a capital letter, like A
• Each cell in the matrix identified by row and 

column subscripts:  aij
– First subscript is row, second is column

Age Gender Income
Mary 32 1 90,000
Bill 50 2 45,000
John 12 2 0
Larry 20 2 8,000

a12 = 1
a43 = 8000

A



Vectors

• Each row and each column in a matrix is a 
vector
– Vertical vectors are column vectors, horizontal are 

row vectors

• Denoted by lowercase bold letter: y
• Each cell in the vector identified by subscript zi

X Y Z
Mary 32 1 90,000
Bill 50 2 45,000
John 12 2.1 0
Larry 20 2 8,000

y3 = 2.1
z2 = 45,000



Ways and Modes
• Ways are the dimensions of a matrix.
• Modes are the sets of entities indexed by the 

ways of a matrix

2-way, 2-mode

Mary Bill John Larry
Mary 0 1 0 1
Bill 1 0 0 1

John 0 1 0 0
Larry 1 0 1 0

2-way, 1-mode

Event 
1

Event 
2

Event 
3

Event 
4

EVELYN 1 1 1 1
LAURA 1 1 1 0
THERESA 0 1 1 1
BRENDA 1 0 1 1
CHARLO 0 0 1 1
FRANCES 0 0 1 0
ELEANOR 0 0 0 0
PEARL 0 0 0 0
RUTH 0 0 0 0
VERNE 0 0 0 0
MYRNA 0 0 0 0



1-Mode Matrices

• Item by item proximity matrices
– Correlation matrices

• Matrix of correlations among variables

– Distance matrices
• Physical distance between cities

– Adjacency matrices
• Actor by actor matrices that record who has a tie of a 

given kind with whom

• Strength of tie



Adjacency matrix

1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
- - - - - - - - - - - - - - - - - -

1   HOLLY  - 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
2  BRAZEY  0 - 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
3   CAROL  0 0 - 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
4     PAM  0 0 0 - 0 1 1 1 0 0 0 0 0 0 0 0 0 0
5     PAT  1 0 1 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0
6  JENNIE  0 0 0 1 1 - 0 1 0 0 0 0 0 0 0 0 0 0
7 PAULINE  0 0 1 1 1 0 - 0 0 0 0 0 0 0 0 0 0 0
8     ANN  0 0 0 1 0 1 1 - 0 0 0 0 0 0 0 0 0 0
9 MICHAEL  1 0 0 0 0 0 0 0 - 0 0 1 0 1 0 0 0 0

10    BILL  0 0 0 0 0 0 0 0 1 - 0 1 0 1 0 0 0 0
11     LEE  0 1 0 0 0 0 0 0 0 0 - 0 0 0 0 1 1 0
12     DON  1 0 0 0 0 0 0 0 1 0 0 - 0 1 0 0 0 0
13    JOHN  0 0 0 0 0 0 1 0 0 0 0 0 - 0 1 0 0 1
14   HARRY  1 0 0 0 0 0 0 0 1 0 0 1 0 - 0 0 0 0
15    GERY  0 0 0 0 0 0 0 0 1 0 0 0 0 0 - 1 0 1
16   STEVE  0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 - 1 1
17    BERT  0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 - 1
18    RUSS  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 -

Which 3 people did you interact with the most last week?



2-Mode Matrices

• Profile matrices
– Individuals’ scores on a set of personality scales

• Participation  in events; membership in groups



Profile Matrices

• Typically, we use profiles to refer 
to the patterns of responses 
across a row of a matrix, generally 
a 2-mode matrix.

• We might then compare profiles 
across the rows to see which rows 
have the most similar or dissimilar 
profiles.
– We can also conceive of this

down the columns, as well.  
In fact, when we correlate 
variables in traditional OLS, 
we are actually comparing the 
profiles of each pair of variables 
across the respondents.

ID A B C D E
1 0 6 6 2 0
2 0 3 3 1 0
3 2 0 0 3 0
4 6 4 4 7 4
5 3 3 3 3 3

0

1

2

3

4

5

6

7

8

A B C D E

1

2

3

4

5



Aggregations and Operations

• Unary (Intra-Matrix) Operations
– Row sums/marginals
– Column sums/marginals
– Matrix Sums
– Transpose
– Normalizations
– Dichotomization
– Symmetrizing

• Cellwise Binary (Inter-Matrix) Operations
– Sum
– Cellwise multiplication
– Boolean Operations

• Special Binary (Inter-Matrix) Operations
– Cross Product (Matrix Multiplication)



Summations

• Row sums (aka row marginals)

• Column sums   

• Matrix sums

]'0,1,2,3[==∑
j

iji xr

]2,2,1,1[==∑
i

ijj xc

6
,

==∑
ji

ijxm

Mary Bill John Larry
Row 

Marginals

Mary 0 1 1 1 3
Bill 1 0 1 0 2

John 0 0 0 1 1
Larry 0 0 0 0 0

1 1 2 2 6

13 =r 23 =c 6=m

Column 
Marginals



Normalizing

• Converting to proportions
– Rows

– Columns

i

ij
ij r

x
x =* where ri gives the sum of row i

j

ij
ij c

x
x =*

Mary Bill John Larry
Row 
Sums

Mary 0 1 1 1 3
Bill 1 0 1 0 2

John 0 0 0 1 1
Larry 0 0 0 0 0

Column 
Marginals 1 1 2 2 6

Mary Bill John Larry
Row 
sums

Mary 0 .33 .33 .33 1
Bill .5 0 .5 0 1

John 0 0 0 1 1
Larry

Column 
Marginals .5 .33 .83 1.33 3



Normalizing

• Converting to z-scores (standardizing)
– Columns

j

jij
ij

ux
x

σ
−

=* where uj gives the mean of 
column j, and σj is the std 
deviation of column j

Var 1 Var 2 Var 3 Var 4 Var 1 Var 2 Var 3 Var 4
Mary 3 20 25 10 Mary 1.34 -0.38 1.34 -0.38

Bill 1 55 15 45 Bill -0.45 1.44 -0.45 1.44
John 0 32 10 22 John -1.34 0.25 -1.34 0.25
Larry 2 2 20 -8 Larry 0.45 -1.31 0.45 -1.31

Mean 1.5 27.3 17.5 17.3 Mean 0.00 0.00 0.00 0.00

Std Dev 1.1 19.3 5.6 19.3 Std Dev 1.00 1.00 1.00 1.00



Transposes
• Transpose of matrix M is denoted M’ or MT

• The transpose of a matrix is created by 
interchanging rows and columns
– For all i and j, 
– So the transpose of an m by n matrix is an n by m 

matrix

A B C D E
1 0 6 6 2 0
2 0 3 3 1 0
3 2 0 0 3 0
4 6 4 4 7 4
5 3 3 3 3 3

1 2 3 4 5
A 0 0 2 6 3
B 6 3 0 4 3
C 6 3 0 4 3
D 2 1 3 7 3
E 0 0 0 4 3

Matrix M
Its transpose, M’

ji
T
ij mm =



Transpose (Another Example)

• Given Matrix M, swap 
the rows and columns 
to make Matrix MT

M Tennis Football Rugby Golf

Mike 0 0 1 0
Ron 0 1 1 0
Pat 0 0 0 1
Bill 1 1 1 1
Joe 0 0 0 0
Rich 0 1 1 1
Peg 1 1 0 1

MT Mike Ron Pat Bill Joe Rich Peg

Tennis 0 0 0 1 0 0 1

Football 0 1 0 1 0 1 1

Rugby 1 1 0 1 0 1 0

Golf 0 0 1 1 0 1 1



Dichotomizing

• X is a valued matrix, say 1 to 10 rating of 
strength of tie

• Construct a matrix Y of ones and zeros so that
– yij = 1 if xij > 5, and yij = 0 otherwise

EVE LAU THE BRE CHA
EVELYN 8 6 7 6 3
LAURA 6 7 6 6 3
THERESA 7 6 8 6 4
BRENDA 6 6 6 7 4
CHARLOTTE 3 3 4 4 4

EVE LAU THE BRE CHA
EVELYN 1 1 1 1 0
LAURA 1 1 1 1 0
THERESA 1 1 1 1 0
BRENDA 1 1 1 1 0
CHARLOTTE 0 0 0 0 0

xij > 5

YX



Symmetrizing

• When matrix is not symmetric, i.e., xij ≠ xji

• Symmetrize various ways. Set yij and yji to:
– Maximum(xij, xji) {union rule}

– Minimum (xij, xji) {intersection rule}

– Average:  (xij + xji)/2

– Lowerhalf:  choose xij when i > j and xji otherwise

– etc



Symmetrizing Example

• X is non-symmetric (and happens to be 
valued)

• Construct matrix Y such that yij (and yji) = 
maximum of xij and xji

Symmetrized by Maximum

X

ROM BON AMB BER PET LOU
ROMUL_10 0 1 1 0 3 0
BONAVEN_5 0 0 1 0 3 2
AMBROSE_9 0 1 0 0 0 0

BERTH_6 0 1 2 0 3 0
PETER_4 0 3 0 1 0 2
LOUIS_11 0 2 0 0 0 0

ROM BON AMB BER PET LOU
ROMUL_10 0 1 1 0 3 0
BONAVEN_5 1 0 1 1 3 2
AMBROSE_9 1 1 0 2 0 0

BERTH_6 0 1 2 0 3 0
PETER_4 3 3 0 3 0 2
LOUIS_11 0 2 0 0 2 0



Cellwise Binary Operators

• Sum (Addition)
C = A + B where cij = aij + bij

• Cellwise (Element) Multiplication
C = A * B where cij = aij * bij

• Boolean operations

C = A ∧ B  (Logical And) where cij = aij ∧ bij

C = A ∨ B  (Logical Or) where cij = aij ∨ bij



• Notation:

• Definition:

• Example:

Matrix Multiplication

∑=
k

kjikij bac
C = AB

Mary Bill John Larry Mary Bill John Larry Mary Bill John Larry

Mary 0 1 1 1 Mary 0 0 1 1 Mary 1 1 1 1

Bill 1 0 1 0 Bill 1 0 1 0 Bill 0 0 1 2

John 0 0 0 1 John 0 0 0 1 John 0 1 0 0

Larry 0 0 0 0 Larry 0 1 0 0 Larry 0 0 0 0

A B C=AB

Note: matrix products are 
not generally commutative. 
i.e., AB does not usually 
equal BA



Matrix Multiplication

• C = AB or C = A x B
– Only possible when the number of 

columns in A is the same as the 
number of rows in B, as in mAk and 

kBn

– These are said to be conformable

– Produces mCn

• It is calculated as:
cij = Σ aik * bkj for all k



A Matrix Product Example

• Given a Skills and Items matrix 
calculate the “affinity” that each 
person has for each question

• Kev for Question 1 is:
= 1.00 * .5 + .75* .1 + .80 * .40
= .5 + .075 + .32  = 0.895

• Lisa for Question 3 is:
= .75 * .0 + .60* .90 + .75 * .1
= .0 + .54 + .075 = 0.615

Skills Math Verbal Analytic
Kev 1.00 .75 .80
Jeff .80 .80 .90
Lisa .75 .60 .75
Kim .80 1.00 .85

Items Q1 Q2 Q3 Q4

Math .50 .75 0 .1

Verbal .10 0 .9 .1

Analytic .40 .25 .1 .8

Affin Q1 Q2 Q3 Q4

Kev 0.895 0.95 0.755 0.815

Jeff 0.840 0.825 0.810 0.880

Lisa 0.735 0.75 0.615 0.735

Kim 0.840 0.813 0.985 0.860



Matrix Inverse and Identity
• The inverse of a matrix X is a Matrix X-1 such that XX-1 = I, 

where I is the identity matrix 

• Inverse matrices can be very useful for solving matrix 
equations that underlie  some network  algorithms 

1 0 -2

4 1 0

1 1 7

X X-1
I

Note:
• (XX-1 = X-1X = I)
• Non square matrices do not have an inverse*

=

7 -2 2

-28 9 -8

3 -1 1

1 0 0

0 1 0

0 0 1



Linear Combinations

• Multiply matrix X by vector b
– X consists of scores obtained by persons (rows) on tests (columns)
– b is a set of weights for each test
– Matrix product y=Xb gives the sum of scores for each person, with 

each test weighted according to b
– The cells of y are constructed as follows:

...2211 ++==∑ bxbxbxy ii
j

jiji

X
80 69 39
87 90 9
17 43 79
36 93 7
67 19 13
92 93 50
53 69 7

b
0.25
0.25
0.50

y
56.75
48.75
54.50
35.75
28.00
71.25
34.00

=



Regression in matrix terms

• y = Xb

• X’y = X’Xb

• (X’X)-1X’y = B

• yi = b1xi1 + b2xi2 + …



Regression in matrix terms

• We have matrix X whose columns are variables, 
and vector Y which is an outcome, and want to 
build model
– yi = b1xi1 + b2xi2 + …
– Trouble is, we don’t know what the values of b are

• Express regression equation as matrix product 
– y = Xb

• Now do a little algebra
– X’y = X’Xb //pre-multiply both sides by X’
– (X’X)-1X’y = b //pre-multiply by (X’X)-1



Products of matrices & their transposes

• X’X =  pre-multiplying X by its transpose

• Computes sums of products of each pair of 
columns (cross-products)

• The basis for most similarity measures
1 2 3 4

Mary 0 1 1 1

Bill 1 0 1 0

John 0 0 0 1

Larry 0 0 0 0

1 2 3 4
1 1 0 1 0
2 0 1 1 1
3 1 1 2 1
4 0 1 1 2

∑=
k

kjkiij baXX )'(



Products of matrices & their transposes

• XX’ =  product of matrix X by its transpose

• Computes sums of products of each pair of 
rows (cross-products)

• Similarities among rows

∑=
k

jkikij baXX )'(

1 2 3 4

Mary 0 1 1 1

Bill 1 0 1 0

John 0 0 0 1

Larry 0 0 0 0

Mary Bill John Larry

Mary 3 1 1 0

Bill 1 2 0 0

John 1 0 1 0

Larry 0 0 0 0



EVE LAU THE BRE CHA FRA ELE PEA RUT VER MYR KAT SYL NOR HEL DOR OLI FLO
EVELYN 8 6 7 6 3 4 3 3 3 2 2 2 2 2 1 2 1 1
LAURA 6 7 6 6 3 4 4 2 3 2 1 1 2 2 2 1 0 0
THERESA 7 6 8 6 4 4 4 3 4 3 2 2 3 3 2 2 1 1
BRENDA 6 6 6 7 4 4 4 2 3 2 1 1 2 2 2 1 0 0
CHARLOTTE 3 3 4 4 4 2 2 0 2 1 0 0 1 1 1 0 0 0
FRANCES 4 4 4 4 2 4 3 2 2 1 1 1 1 1 1 1 0 0
ELEANOR 3 4 4 4 2 3 4 2 3 2 1 1 2 2 2 1 0 0
PEARL 3 2 3 2 0 2 2 3 2 2 2 2 2 2 1 2 1 1
RUTH 3 3 4 3 2 2 3 2 4 3 2 2 3 2 2 2 1 1
VERNE 2 2 3 2 1 1 2 2 3 4 3 3 4 3 3 2 1 1
MYRNA 2 1 2 1 0 1 1 2 2 3 4 4 4 3 3 2 1 1
KATHERINE 2 1 2 1 0 1 1 2 2 3 4 6 6 5 3 2 1 1
SYLVIA 2 2 3 2 1 1 2 2 3 4 4 6 7 6 4 2 1 1
NORA 2 2 3 2 1 1 2 2 2 3 3 5 6 8 4 1 2 2
HELEN 1 2 2 2 1 1 2 1 2 3 3 3 4 4 5 1 1 1
DOROTHY 2 1 2 1 0 1 1 2 2 2 2 2 2 1 1 2 1 1
OLIVIA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2
FLORA 1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
EVELYN 1 1 1 1 1 1 0 1 1 0 0 0 0 0
LAURA 1 1 1 0 1 1 1 1 0 0 0 0 0 0
THERESA 0 1 1 1 1 1 1 1 1 0 0 0 0 0
BRENDA 1 0 1 1 1 1 1 1 0 0 0 0 0 0
CHARLOTTE 0 0 1 1 1 0 1 0 0 0 0 0 0 0
FRANCES 0 0 1 0 1 1 0 1 0 0 0 0 0 0
ELEANOR 0 0 0 0 1 1 1 1 0 0 0 0 0 0
PEARL 0 0 0 0 0 1 0 1 1 0 0 0 0 0
RUTH 0 0 0 0 1 0 1 1 1 0 0 0 0 0
VERNE 0 0 0 0 0 0 1 1 1 0 0 1 0 0
MYRNA 0 0 0 0 0 0 0 1 1 1 0 1 0 0
KATHERINE 0 0 0 0 0 0 0 1 1 1 0 1 1 1
SYLVIA 0 0 0 0 0 0 1 1 1 1 0 1 1 1
NORA 0 0 0 0 0 1 1 0 1 1 1 1 1 1
HELEN 0 0 0 0 0 0 1 1 0 1 1 1 0 0
DOROTHY 0 0 0 0 0 0 0 1 1 0 0 0 0 0
OLIVIA 0 0 0 0 0 0 0 0 1 0 1 0 0 0
FLORA 0 0 0 0 0 0 0 0 1 0 1 0 0 0

EV LA TH BR CH FR EL PE RU VE MY KA SY NO HE DO OL FL

E1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E3 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

E4 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

E5 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

E6 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0

E7 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0

E8 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0

E9 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1

E10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0

E11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

E12 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

E13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

E14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

Multiplying a matrix by its transpose



Boolean matrix multiplication

• Values can be 0 or 1 for all matrices

• Products are dichotomized to conform:

Mary Bill John Larry Mary Bill John Larry Mary Bill John Larry

Mary 0 1 0 1 Mary 0 0 1 1 Mary 1 1 1 0

Bill 1 0 1 0 Bill 1 0 1 0 Bill 0 0 0 1

John 0 0 0 1 John 0 0 0 1 John 0 1 0 0

Larry 0 0 0 0 Larry 0 1 0 0 Larry 0 0 0 0

A B AB

Would have been a 2 in 
regular matrix multiplication



Relational Composition

• If we represent binary relations as binary 
adjacency matrices, boolean matrix products 
correspond to relational composition
– F°E corresponds to FE

Mary Bill John Larry Mary Bill John Larry Mary Bill John Larry

Mary 0 1 0 1 Mary 0 0 1 1 Mary 1 1 1 0

Bill 1 0 1 0 Bill 1 0 1 0 Bill 0 0 0 1

John 0 0 0 1 John 0 0 0 1 John 0 1 0 0

Larry 0 0 0 0 Larry 0 1 0 0 Larry 0 0 0 0
E FEF

Likes Has conflicts with
Likes someone who 
has conflicts with



More Relational Composition

• Given these relations
– A (authored). Relates persons  documents
– P (published in). Relates docs  journals
– K (has keyword). Relates docs  keywords

• Compositions 
– AA-1. if (i,j)∈AA-1, then i authors a documents that is authored by j. i.e., 

i and j are coauthors
– AP. Person i authored a document that is published in journal j. so i has 

published in journal j
– AK. Person i authored a doc that has keyword j. So, i writes about topic 

j
– AKK-1A-1. person i authored a document that has a keyword that is in a 

document that was authored by j. In other words, i and j write about 
the same topics

– AKK-1A-1AP.  person i authored a document that has a keyword that is 
in a document that was authored by someone who has published in 
journal j. I.e., i has written about a topic that has appeared in journal j



Graph Theoretic Concepts
• In this section we will cover:

– Definitions
– Terminology
– Adjacency
– Density concepts

• E.g, Completeness
– Walks, trails, paths
– Cycles, Trees

– Reachability/Connectedness
• Connectivity, flows

– Isolates, Pendants, Centers
– Components, bi-components
– Walk Lengths, distance

• Geodesic distance
– Independent paths
– Cutpoints, bridges



Undirected Graphs

• An undirected graph G(V,E) consists of …
– Set of nodes|vertices V

representing actors
– Set of lines|links|edges E

representing ties among pairs of actors
• An edge is an unordered pair 

of nodes (u,v)
• Nodes u and v adjacent if (u,v) ∈ E
• So E is subset of set of all pairs of nodes 

• Drawn without arrow heads
– Sometimes with dual arrow heads

• Used to represent social relations where direction 
doesn’t make sense, or symmetry is logically necessary
– In communication with; attending same meeting as



Directed vs. Undirected Ties

• Undirected relations
– Attended meeting with
– Communicates daily with

• Directed relations
– Lent money to

• Logically vs empirically directed ties
– Empirically, even un-

directed relations can 
be non-symmetric due to 
measurement error

Bob 

Betsy 

Bonnie 

Betty 

Biff 



Directed Graphs (Digraphs)

• Digraph G(V,E) consists of …
– Set of nodes V
– Set of directed arcs E

• An arc is an ordered pair of nodes (u,v)
• (u,v) ∈ E indicates u sends arc to v
• (u,v) ∈ E does not necessarily imply that 

(v,u) ∈ E (although it might happen)

• Ties drawn with arrow heads, which can be in both 
directions

• Represent logically non-symmetric or anti-symmetric 
social relations
– Lends money to



Graphical representation of a digraph
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BERT
RUSS



Adjacency matrix of a digraph
1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
- - - - - - - - - - - - - - - - - -

1   HOLLY  1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
2  BRAZEY  0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
3   CAROL  0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
4     PAM  0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
5     PAT  1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
6  JENNIE  0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
7 PAULINE  0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
8     ANN  0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
9 MICHAEL  1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0
10    BILL  0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0
11     LEE  0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
12     DON  1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0
13    JOHN  0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1
14   HARRY  1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0
15    GERY  0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1
16   STEVE  0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
17    BERT  0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
18    RUSS  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1



Transposing adjacency matrix

• Interchanging rows/columns of adjacency 
matrix effectively reverses the direction of ties

Mary Bill John Larry Mary Bill John Larry
Mary 0 1 0 1 Mary 0 1 0 1
Bill 1 0 0 1 Bill 1 0 1 0

John 0 1 0 0 John 0 0 0 1
Larry 1 0 1 0 Larry 1 1 0 0

Gives money to Gets money from

john

bill
mary

larry
john

bill
mary

larry



Valued Digraphs (vigraphs)

• A valued digraph G(V,E,W) consists of …
– Set of nodes V
– Set of directed arcs E

• An arc is an ordered pair of 
nodes (u,v)

• (u,v) ∈ E indicates u sends 
arc to v

• (u,v) ∈ E does not imply that 
(v,u) ∈ E

– Mapping W of arcs to real values

• Values can represent such things as
– Strength of relationship
– Information capacity of tie
– Rates of flow or traffic across tie
– Distances between nodes
– Probabilities of passing on information 
– Frequency of interaction

3.72

5.28
0.1

2.9

3.2

1.2

1.59.1
8.9

5.1
3.5



Valued Adjacency Matrix
• The diagram below uses solid lines to 

represent the adjacency matrix, while 
the numbers along the solid line (and 
dotted lines where necessary) 
represent the proximity matrix.

• In this particular case, one can derive 
the adjacency matrix by dichotomizing 
the proximity matrix on a condition of 
pij <= 3.

Dichotomized
Jim Jill Jen Joe

Jim - 1 0 1
Jill 1 - 1 0
Jen 0 1 - 1
Joe 1 0 1 -

Distances btw offices
Jim Jill Jen Joe

Jim - 3 9 2
Jill 3 - 1 15
Jen 9 1 - 3
Joe 2 15 3 -

Jim

Jill

Jen

Joe

3

2

9

1

15
3



Bipartite graphs

• Used to represent 
2-mode data

• Nodes can be 
partitioned into 
two sets 
(corresponding to 
modes)

• Ties occur only 
between sets, not 
within



Density and Completeness

• A graph is complete if all 
possible edges are 
present. 

• The density of a graph is 
the number of edges 
present divided by the 
number that could have 
been

BRAZEY

LEE

GERY

STEVE

BERT

RUSS



Density

• Number of ties, expressed as percentage of the number of 
ordered/unordered pairs

Low Density (25%)
Avg. Dist. = 2.27

High Density (39%)
Avg. Dist. = 1.76



Density

Ties to Self
Allowed No ties to self

Undirected

Directed

2/)1( −
=

nn
T

T = number of ties in network
n = number of nodes

2/2n
T

=

Number of ties divided by number possible

)1( −
=

nn
T

2n
T
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Graph traversals
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BRAZEY

CAROL

PAM PAT

JENNIE

PAULINE

ANN

MICHAEL

BILL

LEE

DON

JOHN

HARRY
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BERT

RUSS

• Walk
– Any unrestricted traversing of vertices 

across edges  (Russ-Steve-Bert-Lee-Steve)

• Trail
– A walk restricted by not repeating an edge 

or arc, although vertices can be revisited 
(Steve-Bert-Lee-Steve-Russ)

• Path
– A trail restricted by not revisiting any vertex (Steve-

Lee-Bert-Russ)

• Geodesic Path
– The shortest path(s) between two vertices (Steve-

Russ-John is shortest path from Steve to John)

• Cycle
– A cycle is in all ways just like a path except that it 

ends where it begins
– Aside from endpoints, cycles do not repeat nodes
– E.g. Brazey-Lee-Bert-Steve-Brazey



Length & Distance

• Length of a path (or any 
walk) is the number of 
links it has

• The Geodesic Distance 
(aka graph-theoretic 
distance) between two 
nodes is the length of the 
shortest path 
– Distance from 5 to 8 is 2, 

because the shortest path 
(5-1-8) has two links

1

2

3

4 5

6

7

8
9

10

11
12



Geodesic Distance Matrix

a b c d e f g

a 0 1 2 3 2 3 4

b 1 0 1 2 1 2 3

c 2 1 0 1 1 2 3

d 3 2 1 0 2 3 4

e 2 1 1 2 0 1 2

f 3 2 2 3 1 0 1

g 4 3 3 4 2 1 0



Powers of the adjacency matrix

• If you multiply an adjacency matrix X by itself, 
you get XX or X2

• A given cell x2
ij gives the number of walks from 

node i to node j of length 2

• More generally, the cells of Xk give the number 
of walks of length exactly k from each node to 
each other



Matrix powers example

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 2 0 1 1 0 1 2 0 4 1 1 1

2 1 0 1 0 0 0 2 0 2 0 1 1 0 2 2 0 4 1 1 1 2 0 6 2 5 6 1

3 0 1 0 1 1 0 3 1 0 3 1 1 1 3 0 4 2 4 5 1 3 4 2 13 7 7 5

4 0 0 1 0 1 0 4 0 1 1 2 1 1 4 1 1 4 2 4 1 4 1 5 7 8 7 4

5 0 0 1 1 0 1 5 0 1 1 1 3 0 5 1 1 5 4 2 3 5 1 6 7 7 12 2

6 0 0 0 0 1 0 6 0 0 1 1 0 1 6 0 1 1 1 3 0 6 1 1 5 4 2 3

X X2 X3 X4

Note that shortest path from 1 to 5 is 
three links, so x1,5 = 0 until we get to X3



Subgraphs

• Set of nodes
– Is just a set of nodes

• A subgraph
– Is set of nodes together with 

ties among them

• An induced subgraph
– Subgraph defined by a set of 

nodes

– Like pulling the nodes and 
ties out of the original graph

a

b c

d

ef

a

b c

d

ef

Subgraph induced by considering 
the set {a,b,c,f,e}



Components

• Maximal sets of nodes in which every node 
can reach every other by some path (no 
matter how long)

• A graph is connected if it has just one 
component

It is relations (types of tie) that define different 
networks, not components. A network that has two 
components remains one (disconnected) network.



Components in Directed Graphs

• Strong component
– There is a directed path from each member of the 

component to every other

• Weak component
– There is an undirected path (a weak path) from 

every member of the component to every other

– Is like ignoring the direction of ties – driving the 
wrong way if you have to



A network with 4 weak components

Recent acquisition

Older acquisitions

Original company

Data drawn from Cross, Borgatti & Parker 2001.

Who you go to so that you can say ‘I ran it by ____, and she says ...’



Strong components
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Node-related concepts
• Degree

– The number of ties incident upon 
a node

– In a digraph, we have indegree
(number of arcs to a node) and 
outdegree (number of arcs from a 
node)

• Pendant
– A node connected to a 

component through only one 
edge or arc

• A node with degree 1
• Example: John

• Isolate
– A node which is a component on 

its own 
• E.g., Evander
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STEVE
BERT
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Trees

• A tree is a connected 
graph that contains no 
cycles

• In a tree, there is 
exactly one path from 
any node to any other

http://upload.wikimedia.org/wikipedia/commons/2/24/Tree_graph.svg�
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Cutpoints and Bridges

• Cutpoint
– A node which, if 

deleted, would 
increase the 
number of 
components

• Bridge
– A tie that, if removed, 

would increase 
the number of 
components

If a tie is a bridge, at least one of its 
endpoints must be a cutpoint



Local Bridge of Degree K

• A tie that connects nodes that would 
otherwise be at least k steps apart

A
B



Cutsets

• Vertex cut sets (aka cutsets)
– A set of vertices S = {u,v,…} of minimal size whose 

removal would increase the number of 
components in the graph

• Edge cut sets 
– A set of edges S = {(u,v),(s,t)…} of minimal size 

whose removal would increase the number of 
components in the graph



Independent Paths

• A set of paths is node-independent if they share no 
nodes (except beginning and end)
– They are line-independent if they share no lines

S
T

• 2 node-independent paths from S to T
• 3 line-independent paths from S to T



Connectivity

S
T

• Line connectivity λ(s,t) 
is the minimum number 
of lines that must be 
removed to disconnect 
s from t

• Node connectivity κ(s,t) 
is minimum number of 
nodes that must be 
removed to disconnect 
s from t



Bi-Components (Blocks)

• A bicomponent is a maximal subgraph such 
that every node can reach every other by at 
least two node-independent paths

• Bicomponents contain no cutpoints

There are four bicomponents in this graph:
{1 2 3 4 5 6}, {6 15}, {15 7}, and {7 8 9 10 11 12}



Menger’s Theorem

• Menger proved that the number of line 
independent paths between s and t equals the 
line connectivity λ(s,t)

• And the number of node-independent paths 
between s and t equals the node connectivity 
κ(u,v)



Maximum Flow

S
T

• If ties are pipes with capacity of 1 unit of flow, 
what is the maximum # of units that can flow 
from s to t?

• Ford & Fulkerson show this was equal to the 
number of line-independent paths
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