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Introduction

* |n social network analysis, we draw on three
major areas of mathematics regularly:

— Relations

* Branch of math that deals with mappings between sets, such
as objects to real numbers (measurement) or people to
people (social relations)

— Matrix Algebra
* Tables of numbers

e Operations on matrices enable us to draw conclusions we
couldn’t just intuit

— Graph Theory

 Branch of discrete math that deals with collections of ties
among nodes and gives us concepts like paths



BINARY RELATIONS



Binary Relations

 The Cartesian product S1xS2 of two sets is the
set of all possible ordered pairs (u,v) in which
ueS1 and veS2
— Set {a,b,c,d}
— Ordered pairs:
e (a,a), (a,b), (3,c), (a,d)
e (b,a),(b,b), (b,c), (b,d)
* (c,a),(c,b), (c,c), (c,d)
e (d,a),(d,b),(d,c),(d,d)



Binary Relations

e Given sets S1 and S2, a binary relation R is a
subset of their Cartesian product

Note: S1 and
S2 could be
® the same set

S1

S2
Binary Relation



Relational Terminology

e To indicate that “u is R-related to v” or “u is

mapped to v by the relation R”, we write
— (U,V) € R, or likes

u——>V

— URV

e Example: If R is “likes”, then
— uRv says u likes v
— (jim,jane) € R says jim likes jane



Functions

e Afunction is a relation that is many to one. If F

is a function, then there can only be one v
such that uFv

e Function form
— v = F(u) means that uFv

— So if F is “likes” then v=F(u) says that the person u
likes is v. That is uFv, or u likes v



Properties of Relations

A relation is reflexive if for all u, (u,u)eR

— E.g., suppose R is “is in the same room as”

— uis always in the same room as u, so the relation is reflexive
A relation is symmetric if for all u and v, uRv implies vRu

— If uisin the same room as v, then it always true that v is in the same
room as u. So the relation is symmetric

A relation is transitive if for all u,v,w, the presence of uRv together
with vRw implies uRw

— Ifuisin the same roomasyv, and visin the same room as w, then u is
necessarily in the same room as w

— So the relation is transitive
A relation is an equivalence if it is reflexive, symmetric and
transitive

— The relation “is in the same room as” is reflexive, symmetric and
transitive



Equivalences and Partitions

e A partition P of a set S is an exhaustive set of
mutually exclusive classes such that each member of
S belongs to one and only one class

e E.g., any categorical variable like gender or cluster id

— We use the notation p(u) to indicate the class that
item u belongs to in partition P

 Equivalence relations give rise to partitions
and vice-versa

— The relation “is in the same class as” is an
equivalence relation



Operations

 The converse or inverse of a relation R is denoted
R (but we will often use R’ instead)
— Forall uandyv, (u,v)eR?tif and only if (v,u)eR
— The converse reverses the direction of the mapping

e Example
— If R is represents “gives advice to”, then

 uRv means u gives advice to v, and
e uRvindicates that v gives advice to u

e IfRis symmetric, then R =R

Important note: In the world of matrices, the relational converse corresponds to the matrix
concept of a transpose, denoted X’ or X', and not to the matrix inverse, denoted X1. The -1
superscript and the term “inverse” are unfortunate false cognates.



Relational Composition

e |f Fand E are binary relations, then their composition F°E is a
new relation such that (u,v) eF°E if there exists w such that
(u,w)eF and (w,v) eE.

— i.e., uis F°E-related to v if there exists an intermediary w such that
uis F-related to w and w is E-related to v
e Example:
— Suppose F and E are friend of and enemy of, respectively
— u F°E v means that u has a friend who is the enemy of v

e This “right” notation* which means rightmost relations are applied
first

— start from the end and ask “what is vto u?”

— u F°E v means that v is the enemy of a friend of u
e In functional notation v=E(F(u))

*Important note: Many authors reverse the meaning of F°E, writing it as E°F. This is
known as “left” convention, meaning that the left relation is applied first. So uF°Ev
would mean v is the friend of an enemy of u. That is v = F(E(u))



More Relational Composition

Assume F is “likes”

* uF°Fv meansu likes someone who likes v (v is
liked by someone who is liked by u)
— If uFv =u F°F v for all uand v, we have transitivity

e uF°F!vmeansu likes someone who is liked by v
— Both uand v like w

e uF!°Fvmeansuisliked by someone who likes v
(v is liked by someone who likes u)

— Both u and v are liked by w



Relations can relate different kinds of
items

“is tasked with” relates persons to tasks they
are responsible for

— uTv means person u is responsible for task v

“controls resource” relates persons to
resources they control

— uCv means person u controls resource v

“requires resource” relates tasks to the
resources needed to accomplish them

— uRv means task u requires resource v



These kinds of relations can be
composed as well

e |fTis “tasked with”, Cis “controls”, and R is
“requires”, then

— UT°Rv means person u is tasked with a task that
requires resource v

— uT°R°Clv means person u is tasked with a task
that requires a resource that is controlled by
person v

e i.e.,, uis dependent on v to get something done



Relational Equations

e F=F°F means that uFv if and only if uF°Fv, for all
uandyv

— Friends of friends are always friends, and vice versa
— Transitivity plus embeddedness

e F=E°E means that uFv if and only if uE°Ev

— Enemies of enemies are friends, and all friends have
common enemies

e E=F°E =E°F means that ukv if and only if uF°Ev
and uE°Fv

— Both enemies of friends and friends of enemies are
enemies, and vice-versa



Matrix Algebra

e |n this section, we will cover:
— Matrix Concepts, Notation & Terminologies
— Adjacency Matrices
— Transposes
— Aggregations & Vectors
— Matrix Operations
— Boolean Algebra (and relational composition)



Matrices

Matrices are simply tables. Sometimes
multidimensional

Symbolized by a capital letter, like A

Each cell in the matrix identified by row and
column subscripts: a;

— First subscript is row, second is column

Age Gender Income

Mary | 32 1/ 90,000
Bill 50 2 45,000 dip =

John | 12 2 0 a,; = 8000
Larry | 20 2 8,000




Vectors

e Fach row and each column in a matrix is a
vector

— Vertical vectors are column vectors, horizontal are
row vectors

 Denoted by lowercase bold letter: y
e Each cell in the vector identified by subscript z.

X Y Z
Mary [32| 1 |90,000

y;=2.1 Bill |50 2 45,000

z, =45,000 John |12 2.1 0
Larry | 20 2 8,000




Ways and Modes

 Ways are the dimensions of a matrix.

e Modes are the sets of entities indexed by the
ways of a matrix

Event Event Event Event
1 2 3 4

EVELYN 1 1 1 1
LAURA 1 1 1 0

THERESA 0 1 1 1 Mary Bill John Larry
BRENDA 1 0 1 1 Mary| O 1 0 1
CHARLO 0 0 1 1 Bill 1 0 0 1
FRANCES | O 0 1 0 John | 0 1 0 0
ELEANOR 0 0 0 0 Larry 1 0 1 0
PEARL 0 0 0 0 2-way, 1-mode

RUTH 0 0 0 0

VERNE 0 0 0 0

MYRNA 0 0 0 0

2-way, 2-mode



1-Mode Matrices

* [tem by item proximity matrices

— Correlation matrices

e Matrix of correlations among variables

— Distance matrices

e Physical distance between cities

— Adjacency matrices

e Actor by actor matrices that record who has a tie of a
given kind with whom

e Strength of tie



Adjacency matrix

Which 3 people did you interact with the most last week?

1234567829
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1
3
4
5
8
10
11
12
13
14
15
16
17
18



2-Mode Matrices

 Profile matrices

— Individuals’ scores on a set of personality scales

e Participation in events; membership in groups



Profile Matrices

e Typically, we use profiles to refer

O

to the patterns of responses
across a row of a matrix, generally
a 2-mode matrix.
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 We might then compare profiles
across the rows to see which rows
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profiles.

— We can also conceive of this

down the columns, as well.
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Aggregations and Operations

e Unary (Intra-Matrix) Operations
— Row sums/marginals
— Column sums/marginals
— Matrix Sums
— Transpose
— Normalizations
— Dichotomization
— Symmetrizing
e Cellwise Binary (Inter-Matrix) Operations
— Sum
— Cellwise multiplication
— Boolean Operations
e Special Binary (Inter-Matrix) Operations
— Cross Product (Matrix Multiplication)



* Row sums (aka row marginals)

Summations

rh=> x; =[3210]

|

e Column sums
C; =% =[1122]

I °
e Matrix sums

Mary
Bill
John
Larry

Column
Marginals

Row

Mary Bill John Larry Marginals
o (1] 1 1 3
1 0] 1 0 2
O 0] O 1 1
O 0| O 0 0
1 1 2 2 6




Mary
Bill

John

Larry

Column
Marginals

Normalizing

Converting to proportions

— Rows = _ Ky
g
— Columns X =—
C.
J
Row
Mary Bill John Larry  Sums
0O [1] 1 1 3
1 /0 1 0 2
O [0] O 1 1
O [0] O 0 0
1 1 2 2 6

where r, gives the sum of row i

Row
sums

Mary Bill John Larry

Mary 0O [.33 .33 | .33 1
Bill S5 10| .5 0 1

John 0O 0] O 1 1
Larry

Column

Marginals S5 .33 .83 1.33 3




Normalizing

Converting to z-scores (standardizing)

— Columns . Xe—U. |
X, = —1J ] where u; gives the mean of
. o . column j, and o; is the std
J deviation of column j
Varl Var2 Var3 Var4 Varl Var2 Var3 Var4
Mary 3 20 25 10 Mary | 1.34 | -0.38 | 1.34 | -0.38
Bill 1 55 15 45 Bill -0.45 | 1.44 | -0.45 | 1.44
John 0 32 10 22 John |-1.34| 0.25 | -1.34 | 0.25
Larry 2 2 20 -8 Larry | 0.45 |-1.31| 0.45 | -1.31
Mean 1.5 | 273 | 175 | 17.3 Mean 0.00 | 0.00 | 0.00 | 0.00
Std Dev 1.1 | 193 | 56 | 193 stapev | 1.00 | 1.00 | 1.00 | 1.00




Transposes

e Transpose of matrix M is denoted M’ or M"

 The transpose of a matrix is created by
interchanging rows and columns

— Foralliandj, m; =m;
— So the transpose of an m by n matrix isan n by m

matrix

1 2 3 4 5

AL B C D E
1 SR S-S — A|l o o 2 6 3
2 o 3 3 1 o0 B |6 3 0 4 3
3 (2 0 0 3 0 c|le6 3 0 4 3

4 6 4 4 7 4
E|loOoO o o0 4 3

Matrix M

Its transpose, M’



Transpose (Another Example)

M Tennis | Football | Rugby | Golf
e Given Matrix M, swap Mke | 0 0 1 |0
the rows and columns Ron 0 1 1 |0
to make Matrix MT Pat 0 0 0 |1
Bill 1 1 1 |1
Joe 0 0 0 | O
Rich 0 1 1 1
Peg 1 1 0 | 1
MT Mike | Ron | Pat | Bill | Joe | Rich | Peg
Tennis 0 0 0 1 0 0 1
Football 0 1 0 1 0 1 1
Rugby 1 1 0 1 0 1 0
Golf 0 0 1 1 0 1 1




Dichotomizing

e Xis avalued matrix, say 1 to 10 rating of
strength of tie

e Construct a matrix Y of ones and zeros so that
—vV;; = 1if x;>5, and y;; = 0 otherwise

X Y
EVE | LAU | THE | BRE | CHA EVE | LAU | THE | BRE | CHA
EVELYN 8| 6 | 7|6 3 EVELYN 1 1 1)1 0
LAURA 6 | 7| 6 | 6 3 LAURA 1 1 11 0
THERESA 7|16 | 8|6 4 THERESA 1 1 11 0
BRENDA 6 | 6 | 6| 7 4 BRENDA 1 1 11 0
CHARLOTTE | 3 | 3 | 4 | 4 4 CHARLOTTE | O | O | O | O 0




Symmetrizing

* When matrix is not symmetric, i.e., X; # X;

* Symmetrize various ways. Set y; and y;; to:

— Maximum(x;;, x.:) {union rule}

ij’ jI

— Minimum (x:;, x.:) {intersection rule}

ij’ jI
— Average: (x; + X;)/2

— Lowerhalf: choose x;; when i >j and x;; otherwise

— etc



Symmetrizing Example

e Xis non-symmetric (and happens to be
valued)

* Construct matrix Y such that y; (and y;) =
maximum of x; and x;;

X

ROM BON AMB BER PET LOU ROM BON AMB BER PET LOU

ROMUL10| O | 1| 1 |0 |30 ROMUL10| 0 | 1 | 1 |0 |3] O
BONAVEN.5| 0 | 0 | 1 |0 | 3| 2 BONAVEN 5| 1 | 0 | 1 | 1 2
AMBROSE 9| 0 | 1 | 0 |0 | O | O AMBROSE 9| 1 | 1 | 0 | 2|0 O
BERTH_6 o/ 1] 2|0|3]0 ‘ BERTH_6 o/ 1|2 |0|3]0
PETER_4 0| 3|0 /[1]0]2 PETER_4 3 (3]0 |3]|]0]|2
loUIS 11 | 0 | 2 | 0 |0]|O0] O loUIs 11 | 0 | 2 | 0 |0]|2]0

Symmetrized by Maximum



Cellwise Binary Operators

e Sum (Addition)

C=A+ BWhere CIJ - a” + :)IJ

e Cellwise (Element) Multiplication

C=A * BWhere CIJ - a” * :)IJ

e Boolean operations

C=AAB (Logical And) Where CIJ = a” /\ b”

C=AvVvB (Logical Or) Where CIJ = a” V b”



Matrix Multiplication

e Notation:

e Definition:

e Example:

Mary
Bill
John
Larry

Mary Bill John Larry

0

1

1

1

1
0
0

0
0
0

1
0
0

0
1
0

C =

Mary
Bill
John
Larry

AB
:E:Eimk%q
k

Mary Bill John Larry

0

0

1

1

1
0
0

0
0
1

1
0
0

0
1
0

Note: matrix products are
not generally commutative.

i.e., AB does not usually
equal BA

Mary
Bill
John
Larry

Mary Bill John Larry

1 1] 1 1
0 0O 1 2
0 1| O 0
0 0l 0 0
C=AB




Matrix Multiplication

e C=ABorC=AxB

B
7 b bu_ — Only possible when the number of
b, , (b2 b, . columnsin A is the same as the
- =R = number of rows in B, as in A, and
sl i O Bn
Py || Rl — These are said to be conformable

- a T T—>© — Produces . C.

== — e |tis calculated as:

clj =X alk * bkj for all k

i I x34+40x242x1 1x140x14+2x0] [0 1
0 |l -1x343x24+1x1 —1x14+3x1+1x0[ |4 2



A Matrix Product Example

Skills | Math | Verbal | Analytic ltems | Q1 |Q2 Q3 |Q4
Jeff .80 .80 .90
- Verbal |.10 |0 9 1
Lisa 75 .60 75
Kim 30 1.00 85 Analytic | .40 |.25 i .8
Given a Skills and Items matrix
calculate the “affinity” that each
person has for each question Affin | Q1 Q2 03 Q4
Kev for Question 1 is:
=.5+.075+.32 =0.895 Jeff  |0.840 |0.825(0.810 | 0.880
Lisa for Question 3 is: -
_ 75% 0+ 60* 90+ 75 * 1 Lisa 0.735 |0.75 |0.615(0.735
=.0+.54+.075=0.615 Kim 0.840 |0.813|0.985 | 0.860




Matrix Inverse and ldentity

* Theinverse of a matrix X is a Matrix X'1such that XX1 =1,
where | is the identity matrix

* Inverse matrices can be very useful for solving matrix
equations that underlie some network algorithms

1 0 -2 7 -2 2 1 0

4 1 0 -28 9 -8 0 1

1 1 7 3 -1 1 0 0
X X1 =

Note:
o (XX1=X1IX=1)
 Non square matrices do not have an inverse*



Linear Combinations

e Multiply matrix X by vector b
— X consists of scores obtained by persons (rows) on tests (columns)
— b is a set of weights for each test

— Matrix product y=Xb gives the sum of scores for each person, with
each test weighted according to b

— The cells of y are constructed as follows:

Vi =D XDy = Xuby + X;,b, + ...
j

Yy X b
56.75 80 | 69 | 39 0.25
48.75 87 | 90 | 9 0.25
54.50 ~ 17 | 43 | 79 0.50
35.75 - 36 | 93 | 7
28.00 67 | 19 | 13
71.25 92 | 93 | 50
34.00 53 | 69 | 7




Regression in matrix terms

e v=Xb e y. =bx,; +b,x, + ...
e X'y=XXb
¢ (XX)X'y=8B



Regression in matrix terms

We have matrix X whose columns are variables,

and vector Y which is an outcome, and want to
build model

— VY, =bx; +bx, + ..

— Trouble is, we don’t know what the values of b are
Express regression equation as matrix product
—y=Xb

Now do a little algebra

— X'y =XXb //pre-multiply both sides by X’
— (X’X)IX'y=b //pre-multiply by (X’X)1



Products of matrices & their transposes

e X’'X = pre-multiplying X by its transpose
(X'X); = Zakibkj
e Computes sums of prckaducts of each pair of
columns (cross-products)

 The basis for most similarity measures

Mary

Bill

—

Ok |O|F|F
== ON
=N Ww
(SR IS S e R

A WON P

John

o O |k O [k
o O O |~k N
o O [k |k W
O |k O [k &

Larry




Products of matrices & their transposes

e XX’ = product of matrix X by its transpose
(XX"); = Zaikbjk
e Computes sums of pkroducts of each pair of
rows (cross-products)

e Similarities among rows

1 2 3 4 Mary Bill John Larry
Mary| O 1 |1 1 Mary| 3 1 1 0
Bill | 1 0O |1] 0 ‘ Bill 1 2| 0 0
John| 0O 0 |0 1 John | 1 0| 1 0
Larry] 0 | 0O O] O Larry| O | 0| O 0




Multiplying a matrix by its transpose

FL

PE RU VE MY KA SY NO HE DO OL

LA TH BR CH FR EL
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0
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E12| O

E13| O

E14| O

0 0 0 0 O
0
0
0
0
0

El1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
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Boolean matrix multiplication

e Values can be 0 or 1 for all matrices

* Products are dichotomized to conform:

Mary
Bill
John
Larry

Mary Bill John Larry

0

1

0

1

1
0
0

0
0
0

1
0
0

0
1
0

Mary
Bill
John
Larry

Mary Bill John Larry

0

0

1

1

1
0
0

0
0
1

1
0
0

0
1
0

B

Would have been a 2 in
regular matrix multiplication

Mary Bill John Larry
Mary| 1 |1 | 1 0

Bill O |0 O 1

John| 0 |1| O 0

Larry| O |0 | O 0
AB



Relational Composition

e If we represent binary relations as binary
adjacency matrices, boolean matrix products
correspond to relational composition

— F°E corresponds to FE

Mary
Bill
John
Larry

Likes

Mary Bill John Larry

0

1

0

1

1
0
0

0
0
0

1
0
0

0
1
0

F

Mary
Bill
John
Larry

Has conflicts with

Mary Bill John Larry

0

0

1

1

1
0
0

0
0
1

1
0
0

0
1
0

E

Likes someone who
has conflicts with

Mary Bill John Larry

Mary| 1 |1 | 1 0

Bill | O |0 O 1

John| 0 |1] O 0

Larry| O |0 | O 0
FE



More Relational Composition

* Given these relations
— A (authored). Relates persons = documents
— P (published in). Relates docs = journals
— K (has keyword). Relates docs > keywords
e Compositions
— AALif (i,j)eAAL, then i authors a documents that is authored by j. i.e.,
i and j are coauthors

— AP. Person i authored a document that is published in journal j. so i has
published in journal j

— AK. Person i authored a doc that has keyword j. So, i writes about topic

J

— AKK*AL personiauthored a document that has a keyword that is in a
document that was authored by j. In other words, i and j write about
the same topics

— AKK2A-1AP. person iauthored a document that has a keyword that is
in a document that was authored by someone who has published in
journalj. l.e., i has written about a topic that has appeared in journal j



L B

Graph Theoretic Concepts

In this section we will cover:

Definitions
Terminology
Adjacency

Density concepts
e E.g, Completeness

Walks, trails, paths
Cycles, Trees

Reachability/Connectedness
e Connectivity, flows

Isolates, Pendants, Centers
Components, bi-components

Walk Lengths, distance
e Geodesic distance

Independent paths
Cutpoints, bridges



Undirected Graphs

e An undirected graph G(V,E) consists of ...

— Set of nodes|vertices V
representing actors

— Set of lines|links|edges E
representing ties among pairs of actors

* An edge is an unordered pair
of nodes (u,v)

* Nodes u and v adjacent if (u,v) € E
e So E is subset of set of all pairs of nodes

e Drawn without arrow heads
— Sometimes with dual arrow heads

e Used to represent social relations where direction
doesn’t make sense, or symmetry is logically necessary

— In communication with; attending same meeting as




Directed vs. Undirected Ties

 Undirected relations
— Attended meeting with
— Communicates daily with
 Directed relations
— Lent money to

e Logically vs empirically directed ties

— Empirically, even un-
directed relations can Bob
be non-symmetric due to
measurement error

Bonnie

Biff

Betty

Betsy



Directed Graphs (Digraphs)

e Digraph G(V,E) consists of ...
— Set of nodes V =
— Set of directed arcs E \

 An arcis an ordered pair of nodes (u,v)
. PwW JF
e (u,v) € Eindicates u sends arcto v

e (u,v) € E does not necessarily imply that
(v,u) € E (although it might happen) SM

e Ties drawn with arrow heads, which can be in both
directions

MC

 Represent logically non-symmetric or anti-symmetric
social relations

— Lends money to



Graphical representation of a digraph




Adjacency matrix of a digraph

1234567829
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Transposing adjacency matrix

e |Interchanging rows/columns of adjacency
matrix effectively reverses the direction of ties

Mary
Bill
John
Larry

Mary Bill John Larry

O |1 0 1
1 10| O 1
O |[1] 0 0
1 (0| 1 0

bill
mary L —°

Gives money to

J

N

larry

7

N

Mary Bill John Larry

Mary| O 1 1
Bill 1 0] 1 0
John| 0 |[0] O 1
Larry| 1 11 0 0

Gets money from

john

larry K | john




Valued Digraphs (vigraphs)

A valued digraph G(V,E,W) consists of ...
— Set of nodes V
— Set of directed arcs E

 Anarcis an ordered pair of
nodes (u,v)

e (u,v) € Eindicates u sends
arctov

e (u,v) € E does not imply that
(vu) € E

— Mapping W of arcs to real values

Values can represent such things as
— Strength of relationship
— Information capacity of tie
— Rates of flow or traffic across tie
— Distances between nodes
— Probabilities of passing on information
— Frequency of interaction




Dichotomized

Jim
Jill
Jen
Joe

Valued Adjacency Matrix

Jm Jill Jen Joe
- 1| O 1
1 - 1 0]
0 1 - 1
1 | O 1 -

Distances btw offices

Jim
Jill
Jen
Joe

Jm Jill Jen Joe
- 3|1 9 2
3 - 1 | 15
9 1 - 3
2 |15 3 -

 The diagram below uses solid lines to

represent the adjacency matrix, while
the numbers along the solid line (and
dotted lines where necessary)
represent the proximity matrix.

e Inthis particular case, one can derive

the adjacency matrix by dichotomizing
the proximity matrix on a condition of
Py <= 3.

Jill

Jen




Bipartite graphs

e Used to represent
2-mode data

* Nodes can be
partitioned into
two sets
(corresponding to
modes)

 Ties occur only
between sets, not
within
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Density and Completeness

 Agraph is complete if all
possible edges are
present.

 The density of a graph is
the number of edges
present divided by the
number that could have
been




Density

e Number of ties, expressed as percentage of the number of
ordered/unordered pairs

Low Density (25%) High Density (39%)
Avg. Dist. = 2.27 Avg. Dist. = 1.76



Density

Number of ties divided by number possible

Ties to Self
Allowed No ties to self

Undirected __T = !
ndirecte =7 n(n—1)/2
| T _ T
Directed e n(n—-1)

T = number of ties in network
n = number of nodes



Graph traversals

BRAZEY

Walk

— Any unrestricted traversing of vertices
across edges (Russ-Steve-Bert-Lee-Steve)

Trail

— A walk restricted by not repeating an edge
or arc, although vertices can be revisited
(Steve-Bert-Lee-Steve-Russ)

Path

— Atrail restricted by not revisiting any vertex (Steve-
Lee-Bert-Russ)

Geodesic Path

— The shortest path(s) between two vertices (Steve-
Russ-John is shortest path from Steve to John)
Cycle

— Acycle isin all ways just like a path except that it
ends where it begins

— Aside from endpoints, cycles do not repeat nodes
— E.g. Brazey-Lee-Bert-Steve-Brazey



Length & Distance

e Length of a path (or any
walk) is the number of
links it has

e The Geodesic Distance
(aka graph-theoretic
distance) between two
nodes is the length of the
shortest path

— Distance from 5to 8 is 2,
because the shortest path
(5-1-8) has two links




Geodesic Distance Matrix

@
b C d e f g b
1 2 3 2 3 4
0 1 2 1 2 3
1| o 1| 1| 2| 3 €




Powers of the adjacency matrix

e |If you multiply an adjacency matrix X by itself,
you get XX or X?

 Agiven cell xzij gives the number of walks from
node i to node j of length 2

* More generally, the cells of Xk give the number
of walks of length exactly k from each node to
each other



Matrix powers example

s

Note that shortest path from 1to 5 is
three links, so x, ;= 0 until we get to X

123456 123456 12 3 456

123456

—A| = 1| | ~ o
| o ~N ~ 9 ~
A | N o N <
< N DN N0
o o| | n| V| «
N O | «HA| |
" N M < N O
O | | «—+# nNn| O
A A N I N N
| A < N <
o | N| <| 1n|
N o | | =]
o | o | | ©
" N M < 1 O
o] o | | o] «
O| A dA| | n| O
O| | «+| N| |
—| o ;| A «| «
o | o | | ©
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Subgraphs

e Set of nodes
— Isjust a set of nodes
e Asubgraph
— |s set of nodes together with
ties among them
 Aninduced subgraph

— Subgraph defined by a set of
nodes

— Like pulling the nodes and
ties out of the original graph

b C
N d
f e
b c
a
f e

Subgraph induced by considering
the set {a,b,c,f e}



Components

 Maximal sets of nodes in which every node
can reach every other by some path (no
matter how long)

A graph is connected if it has just one
component

It is relations (types of tie) that define different
networks, not components. A network that has two
compohents remains one (disconnected) network.




Components in Directed Graphs

* Strong component

— There is a directed path from each member of the
component to every other

e Weak component

— There is an undirected path (a weak path) from
every member of the component to every other

— |Is like ignoring the direction of ties — driving the
wrong way if you have to



A network with 4 weak components

Who you go to so that you can say ‘I ran it by , and she says ...’

B
MC
.A \BD
O Recent acquisition =YY JE
Q Older acquisitions
- JB
O Original company PD
SM

Data drawn from Cross, Borgatti & Parker 2001.






Node-related concepts

* Degree

— The number of ties incident upon
a hode

— Inadigraph, we have indegree
(number of arcs to a node) and
outdegree (number of arcs from a
node)

e Pendant

— A node connected to a
component through only one
edge or arc

e Anode with degree 1
e Example: John

* |solate

— A node which is a component on
its own

e E.g., Evander

BRAZEY




Trees

 Atreeisaconnected
graph that contains no
cycles

 |n atree, thereis
exactly one path from
any node to any other



http://upload.wikimedia.org/wikipedia/commons/2/24/Tree_graph.svg�

Cutpoints and Bridges

e Cutpoint

— A node which, if
deleted, would
increase the
number of
components

 Bridge

— A tie that, if removed,
would increase
the number of
components

o If a tie is a bridge, at least one of its
endpoints must be a cutpoint



Local Bridge of Degree K

e Atie that connects nodes that would
otherwise be at least k steps apart

A




Cutsets

e \ertex cut sets (aka cutsets)

— A set of vertices S = {u,v,...} of minimal size whose
removal would increase the number of
components in the graph

e Edge cut sets

— A set of edges S = {(u,v),(s,t)...} of minimal size
whose removal would increase the number of
components in the graph



Independent Paths

* Aset of paths is node-independent if they share no
nodes (except beginning and end)

— They are line-independent if they share no lines

* 2 node-independent paths from Sto T
* 3 line-independent paths from Sto T



Connectivity

 Node connectivity k(s,t) ® Line connectivity A(s,t)

is minimum number of
nodes that must be
removed to disconnect
s fromt

is the minimum number
of lines that must be
removed to disconnect
s from t




Bi-Components (Blocks)

A bicomponent is a maximal subgraph such
that every node can reach every other by at
least two node-independent paths

* Bicomponents contain no cutpoints

& 15 T 10

There are four bicomponents in this graph:
{123456},{615},{157},and {78910 11 12}



Menger’s Theorem

e Menger proved that the number of line
independent paths between s and t equals the
line connectivity A(s,t)

 And the number of node-independent paths
between s and t equals the node connectivity
K(u,Vv)



Maximum Flow

e |f ties are pipes with capacity of 1 unit of flow,
what is the maximum # of units that can flow
fromstot?

 Ford & Fulkerson show this was equal to the
number of line-independent paths

T
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