Network Data Collection

Steve Borgatti

MGT 780 Spring 2010
Sources of data

• Primary
 – asking people about their own ties via survey/interview
 – Experiments
 – Observation

• Secondary
 – using records of interactions or proxies of interactions

• Key informant(s)
 – Asking informant(s) to tell you about the ties among a set of people
 – CSS: ask everyone about everyone’s ties
Sources

• Secondary (often 2-mode)
 – Memberships in groups
 • Facebook “networks”
 • Boards of directors
 – Participation in events
 • Listserv threads;
 • DGG deep south data
 • Voting records, e.g. supreme court data
 – Text analyses
 • Weiss, copdab, KEDS
 • Crawdad, automap
 – Other
 • Email records, purchase/sale records, marriage records, alliances, etc
Emily’s Data

<table>
<thead>
<tr>
<th>Session</th>
<th>Hip</th>
<th>Color</th>
<th>Sex</th>
<th>Description</th>
<th>Purchase Price</th>
<th>Property Line 1</th>
<th>Property Line 2</th>
<th>Sire</th>
<th>Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1179</td>
<td>B</td>
<td>M</td>
<td>Seasonal Change</td>
<td>*RNA (24000)</td>
<td>Foxhills Farm LLC (Bruce Kline) Agent for Michael DesSaye</td>
<td>A Change for April</td>
<td>Calgar y Miss</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>601</td>
<td>DB/BR</td>
<td>M</td>
<td>First Lady Blue</td>
<td>*RNA (190000)</td>
<td>James B. Keogh/Grovendale Agent XV</td>
<td>A.P. Indy</td>
<td>Blue Moonlight</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2457</td>
<td>DB/BR</td>
<td>M</td>
<td>Higher Agenda</td>
<td>Jay Goodwin</td>
<td>Legacy Bloodstock Agent CX</td>
<td>A.P. Indy</td>
<td>Camb ury Angel</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1506</td>
<td>DB/BR</td>
<td>H</td>
<td>Music School</td>
<td>Out 0</td>
<td>Lane's End Agent</td>
<td>A.P. Indy</td>
<td>Delta Music</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>644</td>
<td>CH</td>
<td>M</td>
<td>Indyfault</td>
<td>Out 0</td>
<td>Eaton Sales Agent</td>
<td>A.P. Indy</td>
<td>Digit</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>736</td>
<td>CH</td>
<td>C</td>
<td>A.P. Indy ---</td>
<td>Robert S. West Jr.</td>
<td>Lane's End Agent</td>
<td>A.P. Indy</td>
<td>Inventing Paradise</td>
<td></td>
</tr>
</tbody>
</table>
Primary Data

• Experiments
 – Rumor planting; milgram small world

• Observation
 – Western-Electric Hawthorne plant studies
 – Ethnographic studies
 • Gary alan fine story telling; whyte street corner etc

• Surveys
 – Telephone, web, paper, etc.
Ego vs Whole Network Surveys

• Egonet surveys
 – Randomly sample respondents (egos) and ask about their contacts (alters)
 • The alters are not interviewed
 • One ego’s alters are not matched up with other egos or their alters
 – Collect lots of (perceived) info on the alters
 – Analyze homophily, network composition, etc.

• Whole network surveys (“regular” sna)
Bounding and Sampling Issues

• Type of sampling*
 – Fixed probability (e.g., random sampling)
 – Adaptive samples (e.g., snowball samples)
 – Population (e.g., all members of frame)

• Type of bounding criteria
 – Attributes (IBM top management team)
 – Relations (anyone engaged in needle-sharing)
 – Combination (anyone in Hartford who injects with anyone in Hartford)

• Stances
 – Nominalist / etic (least delusional approach)
 – Realist / emic (best used for true groups)
 – Combination

*Sampling of actors. Sampling of ties is also possible, but rarely done in surveys.

Note: Dimensions are not independent
<table>
<thead>
<tr>
<th>Method</th>
<th>Etic / Nominalist</th>
<th>Emic / Realist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sample</td>
<td>Random sample of persons matching researcher needs e.g., random sample of Dem and Rep voters</td>
<td></td>
</tr>
<tr>
<td>Snowball sample</td>
<td>Interview any qualifying actor with a tie to any actor already selected, up to K waves e.g., ask each person who they inject drugs with, then interview those people. Repeat twice more times</td>
<td>Select alters of existing egos until few new names appearing e.g. start self-identified members of group. Ask them for other members. Keep going until it starts petering out</td>
</tr>
<tr>
<td>Census</td>
<td>All persons matching researcher criteria e.g., all members of the Anthropology dept.</td>
<td>Get list of “members” from somebody in group e.g., locate gang member, obtain list of members, interview all</td>
</tr>
</tbody>
</table>
Keep in mind ...

• You get to study whomever you want.
 – The friendship network among redheads at UK
• Only groups have boundaries.
• Bounding is determined by
 – the research question
 • E.g., Adoption influences versus comparative cohesion
 – the analytic technology you will use
• Realism is almost never that
What network questions to ask?

• i.e., which relations to measure
 – Implicit is often the assumption that there is a kind of true network that we are trying to reveal by asking the best relational questions
 • This is like asking in a regular survey of attitudes: which attitudes are the best ones to ask about?

• Answer is: it depends on what the research question is
 – And you are allowed to study whatever you want
Types of Ties among Persons

Continuous

Similarities
- Co-location
 - Physical distance
- Co-membership
 - Same boards
- Shared Attributes
 - Same race

Social Relations
- Kinship
 - Cousin of
- Other role
 - Boss of; Friend of
- Cognitive / Affective
 - Knows; Dislikes

Discrete

Interactions
- Email to, lunch with

Flows
- Information transfer
Relations Among Organizations

• As corporate entities
 – sells to, leases to, lends to, outsources to
 – joint ventures, alliances, invests in, subsidiary
 – regulates

• Through members
 – ex-member of (personnel flow)
 – interlocking directorates
 – all social relations
Types of Inter-Organizational Ties

Cross-classified by type of tie and type of node

<table>
<thead>
<tr>
<th>Type of Tie</th>
<th>Firms as Entities</th>
<th>Via Individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarities</td>
<td>Joint membership in trade association; Co-located in Silicon valley</td>
<td>Interlocking directorates; CEO of A is next-door neighbor of CEO of B</td>
</tr>
<tr>
<td>Relations</td>
<td>Joint ventures; Alliances; Distribution agreements; Own shares in; Regards as competitor</td>
<td>Chief Scientist of A is friends with Chief Scientist of B</td>
</tr>
<tr>
<td>Interactions</td>
<td>Sells product to; Makes competitive move in response to</td>
<td>Employees of A go bowling with employees of B</td>
</tr>
<tr>
<td>Flows</td>
<td>Technology transfers; Cash infusions such as stock offerings</td>
<td>Emp of A leaks information to emp of B</td>
</tr>
</tbody>
</table>
Questionnaire elements

• Confidentiality reminder (in addition to consent form)

Social Network Questionnaire

Thanks for participating. Please note that the data generated in this survey are NOT anonymous and are NOT confidential. The results will be used in the workshop in Washington. **Important note: you must enter your name in Question 0.**

When you're done, press the "Submit" button. Thanks for your help.

Q0. What is your name:

© 2008 Steve Borgatti
Questionnaire Formats

• Aided (rosters) vs unaided (open-ends)
• Ratings, rankings, forced-choice and checkboxes
• Across (grids) or down (separate questions)
• Electronic, paper or other media
Closed-Ended vs Open-Ended

Roster of names or just blank lines?

• Closed-ended (aided)
 – Requires bounded list
 – Can be impractical for large networks
 – Each alter has ~equal chance of choice

• Open-ended (unaided)
 – Subject to recall errors
 – Can limit number of choices made
 (more effort, limited space)

• Bottom line:
 – I prefer rosters when practical
 – Hybrid designs when not

If you wanted to get something done on behalf of a customer who would you contact? (write as many names as you like in the spaces provided)

____________ ____________
____________ ____________
____________ ____________
____________ ____________
Hybrid Questionnaire

1. If you wanted to get something improved or done on behalf of a customer who would you contact?

 Name (index no.)

 Denny Terio (169)
 Eric Estrada (27)

2. If you wanted to get a true reading on where [company name] was headed as an organization, who would you talk to?

Hybrid designs are useful in large networks
Lookups, dept walk-throughs, etc.

Paper version uses separate booklet containing name directory

Web version uses drop-down menus
Repeated Roster vs MultiGrid

Q1. Please indicate which of the following you had met or been aware of before coming to this workshop.

- Allata, Joan □
- Baer, Justin □
- Baker, Ted □
- □

Q2. Check of f the names of the people you know. By “know” I mean that you have spoken to each ...

- Allata, Joan □
- Baer, Justin □
- Baker, Ted □
- □

Q1. Using the checkboxes below, please indicate who you have heard of or know about among the participants of the workshop.

Q2. Check off the names of the people you know. By "know" I mean that you can attach a name to a face, you have spoken to each other at least once, and the other person is also likely to put you down.

Q3. Check off the names of people you have worked with on a paper or other academic/administrative project.

Q4. Check off the names of a selected set of people whom you don't know but would like to know, based on things you've heard, or their interests, etc.

<table>
<thead>
<tr>
<th>Name</th>
<th>Q1. Heard of them</th>
<th>Q2. Know them</th>
<th>Q3. Worked with</th>
<th>Q4. Want to know</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allata, Joan</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Baer, Justin</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Baker, Ted</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Berzowski, Rick</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Branzei, Oana</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Brooks, Scott</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Brower, Ralph</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
Tick or Rate?

• Ask resp for yes/no decisions or quantitative assessment?
 – Yes/no are cognitively easier on resp (therefore reliable, believable),
 – Yes/no *much* faster to administer
 – But yes/no provides no discrimination among levels – ratings provide more nuance

• A series of binaries can replace one quant rating:
 – Instead of “How often do you see each person?”
 • 1 = once a year; 2 = once a month; 3 = once a week; etc.
 – Use three questions (in this order):
 • Who do you see at least once a year?
 • Who do you see at least once a month?
 • Who do you see at least once a week?

• Forced-choice/rankings usually horrible
Valued Ties
Absolute or relative?

• Absolute:
 – “How often do you talk to _____, on average?”
 1. Once a year or less
 2. Every few months
 3. Every few weeks
 4. Once a week
 5. Every day
 – Need to do pre-testing to determine appropriate time scale
 • Danger of getting no variance
 – Assumes a lot of respondents

© 2008 Steve Borgatti
Absolute or relative?

• Relative
 – “How often do you speak to each person on the list below?”
 • Very infrequently
 • Somewhat infrequently
 • About average
 • Somewhat frequently
 • Very frequently
 – Assumes less of respondents; easier task
 – Is automatically normalized within respondent
 • Removes response set issues
 • Makes it hard to compare values in different rows
Paper or Plastic?

• Paper medium
 – Reliable
 – Reassuring to respondents
 – Errors in data entry
 – Data entry is time-consuming

• Electronic
 – Span distances, time zones
 – Harder to lose
 – Fewer data handling errors
 – Lower response rate
 – Emailed documents vs survey instruments
Dillman Design Considerations

• Network questionnaires can be fun but are usually time-consuming and generate anxiety
• Providing value
• Treating resp with respect
• Attractive formatting
• Cloak in authority and importance
Thank you for your time and patience.

© Ronald S. Burt
Prepared for the Graduate School of Business and the Chicago Management Council
1998
Question Wording Issues

• “Friendship” does not mean the same thing to everyone
 – Especially across national cultures

• Some helpful practices:
 – Use one word label plus two or three sentence description, plus have full paragraph detailed explanation available
 – Don’t make fine distinctions unless you need to
 • Liking, esteem, respect, feel positive towards
 – Use homogeneous samples
Multi-item Scales?

• Multiple, similar relational questions risk respondent fatigue & annoyance
 – Who do you give advice to?
 – Who do you give information to?
 – Who do you give guidance to?
 – Who do you counsel?

• Aggregating to larger categories, such as affective & instrumental can work well
Access and Response Rates

• Dillman rules apply
• Significance, prestige and quality
• Giving back to the informant & organization
• Tireless, relentless, unremitting callbacks
• Best organizations / respondents
 – techies
• Minimum response rates
 – Reality or “journality”?
 – Depends on the research question / analysis
 – Also the pattern of non-response
Krackhardt CSS

Q1. How well the members of each pair know each other:

<table>
<thead>
<tr>
<th></th>
<th>Aaron</th>
<th>Ali</th>
<th>Dan</th>
<th>Dave</th>
<th>David</th>
<th>Ed</th>
<th>George</th>
<th>Greg</th>
<th>Howard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aaron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>George</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response scale: Blank = They have never met. 1 = They are merely acquaintances.
Krackhardt CSS

• Data cube

• Aggregations
 – Row las
 – Col las
 – Intersection LAS
 – Majority rule

• Romney Weller and Batchelder consensus method
Ethical & Strategic Issues

• What makes the network case especially challenging ethically?

• What are the dangers & to whom?
 – In academic setting
 – In management setting
 – In mixed situations
 – In national security setting

• What can we do about it?
Ethical Issues

• Respondents cannot be anonymous
• Missing data are troublesome
 – Creating incentive to downplay dangers
 – Results may be wrong (cf use of polygraphs by courts)
• Non-participants still included
 – And participants are like informers
• Outputs ideally show individual level data
• Pushes boundary of the professional
• Deceptively powerful
 – is still unknown; looks like research
• Quid pro quo arrangements with research sites
 – Management is hiring/firing based on “research” results
3-Way Disclosure Contract

- For research done in organizations
- Signed by management, the researchers, and each participant
- Clearly identifies what will be done with the data

Management Disclosure Contract

Study Authorization
This document authorizes Steve Borgatti and Jose Luis Molina to conduct a social network study at Management Decision Systems (hereafter “the company”) during the period January 1, 2005 to March 1, 2005.

Rights of the Researchers
The data – properly anonymized so that neither individual nor the company are identified -- will form the basis of scholarly publications.

Rights of the Company
In addition, the researchers will furnish the company with a copy of all the data. The company agrees that these data will not be shared among the employees and will only be seen by top management. The company agrees that the data will not form the basis for evaluation of individual employees, but will be used in a developmental way to improve the functioning of the company.

Rights of the Participants
The participants of the survey – the people whose networks are being measured – shall have the right to see their own data to confirm correctness. They may also request a general report from the researchers that does not violate confidentiality of the other participants regarding what was learned in the study.
Truly Informed Consent Form

Introduction

This is a social network study in which we will try to map out the communication network of the organization.

Goals

The academic goal of this study is to understand the factors that determine who talks to whom. We want to understand what factors hinder communication, and which ones facilitate communication. The organization’s goal in this study is to improve communication in areas that need it.

Procedures

You will be asked to fill out an online survey about who you interact with regularly, along with background information about yourself, such as training, department you’re in, and so on. It should take about 30 minutes to complete. In order to map out who talks to whom, we will need you to give us your name when filling out the survey. Once the data have been collected, we will construct social network maps like this one:

Note that the maps contain each person’s name. These maps will be shown to management (specifically, all officers in the organization), but will not be shown to others in the organization. In addition, we will calculate network metrics such as calculating the “degrees of separation” between pairs of people (i.e., the length of the network paths from one person to another).
Risks & Costs

Since management will see the results of this study, there is a chance that someone in management could consider your set of communication contacts to be inappropriate for someone in your position, and could think less of you. Please note, however, that the researchers have obtained a signed agreement from management stipulating that the data will be used for improving communication in the company and will not be used in an evaluative way.

Individual Benefits

We will provide you with direct, individualized feedback regarding your location in the social network of the organization.

Withdrawal from the Study

You may choose to stop your participation in this study at any time. If so, you will not appear on any of the social network maps and no metrics will be calculated that involve you. Note that management has agreed that participation in the study is voluntary.

Confidentiality

As explained above, your participation will not be anonymous. In addition, all of top management will be able to see results of the study that include your name. Outside of top management, however, the data will be kept confidential. Any publicly available analyses of these data will not identify any individual by name, nor identify the organization.

Participant’s Certification

I have read and I believe I understand this Informed Consent document. I believe I understand the purpose of the research project and what I will be asked to do. I understand that I may stop my participation in this research study at anytime and that I can refuse to answer any question(s). I understand that management and only management will see the results of this research with individuals identified by name.

I hereby give my informed and free consent to be a participant in this study.

Signatures:
The Dialectics of Data Collection

In the end, academic research suffers
Coping with common data problems
Idiosyncratic response scales

• Ratings data, say a 5-point scale
• Elevation issues
 – Some resps only say nice things: 4’s and 5’s
 – Others balance around the middle value: 2’s, 3’s, 4’s
• Scatter issues
 – Some resps use very little of the scale available: just 4’s and 5’s
 – Others have 1s and 5s, and avoid the wishy washy middle
• One solution: normalization by rows
 – Burt: divide each value by largest in the row
 • Or divide each value by row sum: “pct of relational energy”
 – Standardize to mean 0, sd 1

© 2008 Steve Borgatti
Unexpected Asymmetry

- M claims to have sex with B, but B does not claim to have sex with M
 - The relation is logically symmetric, but empirically asymmetric
 - errors of recall; strategic response
- Sometimes asymmetry is the point
- Logically symmetric data may be symmetrized
 - if either A or B mentions the other, it’s a tie
 - Only if each mentions the other is it a tie
Symmetric, non-symmetric, anti-symmetric, directed and undirected
Non-Symmetric Relations

• Gives advice to
• Can’t symmetrize logically non-symmetric relations, except by changing meaning of tie
• Unless you ask question both ways:
 – Who do you give advice to?
 – Who gives advice to you?
• Two estimates of the $A \rightarrow B$ tie, and two estimates of the $A \leftarrow B$ tie
Unexpected Asymmetry

• Monica claims to have “relations” with Bill, but Bill does not claim to have relations with Monica
 – The relation is logically symmetric, but empirically asymmetric
 – errors of recall; strategic response
• Can measure (and model) the degree of asymmetry
 – Reciprocity and symmetry indices
• Logically symmetric data may be symmetrized
 – if either A or B mentions the other, it’s a tie
 – Only if both mention the other is it a tie
Measuring symmetry

• Index
 – How often the value of x_{ij} is the same as x_{ji}
 – $T =$ number of unordered pairs (i,j) in which $x_{ij} = x_{ji}$
 – $P =$ number of unordered pairs $= n(n-1)/2$
 – Symmetry $= T/P$

• Equivalently, we are asking whether $X = X'$
 – Test this via QAP correlation
Reciprocity

• How often a tie is reciprocated

• Measure: \[
\frac{|iRj \ AND \ jRi|}{|iRj \ OR \ jRi|}
\]

\(|X|\) indicates a count of the number of times \(X\) occurs, across all pairs \(i,j\)

– How often \(i\) and \(j\) nominate each other as a proportion of the number of times at least one nominates the other

• Can be calculated separately for each node – what proportion of node’s outgoing ties are reciprocated?
Missing Data

• Quick and dirty
 – For logically symmetric relations
 • if Xij is missing, substitute Xji
 • If whole row missing, substitute corresponding column
 – For logically non-symmetric relations, ask questions both ways (who do you give advice to, who gives advice to you)
 • set Aij = Bji
 • i.e., missing row is replaced with column of the inverse relation

• Bayesian imputation methods
Ucinet replacena
(in tools | matrix algebra)

• Syntax
 – > <newds> = replacena(<ds1> <ds2>)
 – Where ds1 is the dataset that contains missing values and ds2 is the dataset from which to draw the correct values

• Example
 – > getadvice = replacena(advfrm transp(advto))
 – > friends = replacena(rawfriends transp(rawfriends))
Krackhardt CSS

Q1. How well the members of each pair know each other:

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Aaron</th>
<th>Ali</th>
<th>Dan</th>
<th>Dave</th>
<th>David</th>
<th>Ed</th>
<th>George</th>
<th>Greg</th>
<th>Howard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>George</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Response scale: Blank = They have never met. 1 = They are merely acquaintances.
From surveys to data

• Ordinary network survey question generates the data for a single row in data matrix
 – Each row may have its own peculiar scale or frequency of 1s

• CSS survey question generates whole matrix for each respondent, creating 3 dimensional data matrix that is node by node by node

• Asking both “give advice to” and “get advice from” generates both a row and column in advice matrix

© 2008 Steve Borgatti
Creating "true" matrix from CSS

Generate single matrix T from the set of n nxn matrices P

• Row las
 – Take row 1 of T from row 1 of matrix P(1). Make row 2 of matrix P(2) into row 2 of T, etc.
 – same as ordinary survey

• Col las
 – Take col 1 of T from col 1 of matrix P(1). Take col 2 from col 2 of matrix P(2)
 – Each col of T is generated from that resp’s perception of the column

• Intersection LAS
 – T(i,j) = 1 if P(i)(i,j) = 1 and P(j)(i,j) = 1.
 – T(I,j) = 1 if both I and j say there is a tie from I to j

• Union LAS
 – T(i,j) = 1 if P(i)(i,j) = 1 or P(j)(i,j) = 1.
 – T(I,j) = 1 if either I or j say there is a tie from I to j

• Majority rule
 – T(I,j) = 1 if most of the matrices in P have a link from I to j

• Romney Weller and Batchelder consensus method
 – Weighting matrices P(k) by prototypicality of each resp k
Ethnographic Sandwich

• Ethnography at front end helps to ...
 – Select the right questions to ask
 – Word the questions appropriately
 – Create enough trust to get the questions answered

• Ethnography at the back end helps to ...
 – Interpret the results
 – Can sometimes use resps as collaborators