7 POSITIONS 

Ideas of social role have been important to social theorists since the middle of the century.  Social networks provide an ideal environment in which to formalise the theoretical concepts of role and position. Then have been two related schools of thought on how best to capture the theoretical concepts involved. In this chapter we shall give consideration to the ideas of structural equivalence.  In its simplest form structural equivalence examines the direct connections of an actor to other actors in the network.  Thus, an actor's position is defined by whom he or she is connected to. In the next chapter we look at generalisations of this concept which seek to capture some of the more abstract ideas involved in social roles.

A simple example of structural equivalence is given by the situation in which one individual substitutes for another.  For example, a computer programmer working on a project may fall sick and their role is then taken over by a contract programmer.  The new programmer relates to all other members of the project team in the same way as the previous programmer.  It follows that the new and the old programmer have exactly the same connections in the work network and, as such, are structurally equivalent and are therefore occupying the same position.

7.1 Intuitive Notions

We recall that a social network may consist of a number of different relations collected on the same set of actors.  One of the fundamental aspects of social role is that it is determined over a number of different relations.  It follows that any definition of structural equivalence must take account of the multirelational nature of social networks.  In addition we must assume that the role structure and positions of individuals are apparent in the relations present in the network data. 

The positional approach to network analysis is based upon identifying similar positions and should be contrasted with the relational or cohesive approach of chapter 4.  In general, positional analysis methods seek to partition actors into mutually exclusive classes of equivalent actors who share similar structural properties. Formal definitions have been developed on directed and undirected networks.  These definitions have then been relaxed so as to allow for the analysis of noisy and valued data. Intuitively two actors are structurally equivalent if they have identical connections to and from all other actors in the network.

7.2 Structural Equivalence

We shall now give a formal definition of structural equivalence, although it is possible to give a sophisticated mathematical definition we shall give a slightly longer but less technical one.  Two actors i and j are structurally equivalent if the following statements are true for every relation:

1. For every actor k which is different from i and j then whenever i is connected to k j is also connected to k and if i is not connected to k then neither is j. Furthermore if i has a connection from k then so does j and if i does not have a connection from k then neither does j. In other words i and j are identically connected to all other actors which are different from themselves.

2. If i is connected to j then j is connected to i and if i is not connected to j then j is not connected to i. This means that i's relationship with j is reflected in j's relationship with i.

3. If i is connected to itself then so is j, if i is not connected to itself then neither is j. So that both actors share the same relationship with themselves.

This definition applies to non valued directed relations, that is sets of relations in which each relation is a directed graph. For every undirected relation the second condition is unnecessary and so is the second part of the first condition. Clearly if the data cannot contain self-loops then the third condition is also redundant. Hence for graphs without self-loops the definition reduces to the following. Actors i and j are structurally equivalent if outside of each other they are connected to exactly the same other actors.

Let us now consider some examples on single relationship networks. If we examine Figure 7.1 we can easily see that actors 3,4 and 5 are all connected to 1 and 2 and are all therefore structurally equivalent. Notice further that actor 1 is connected to 2,3,4,5 and actor 2 is connected to 1,3,4,5 therefore outside of each other they are both connected to 3,4,5 and so are structurally equivalent. In Figure 7.2 actors 3 and 4 both only receive ties from actors 1 and 2 and are therefore structurally equivalent. Actors 1 and 2 are both connected to 3 and 4 and both receive ties from 5, in addition the connection from actor 1 to 2 is matched by the connection from 2 to 1 so that they too are structurally equivalent. Note that 5 is not structurally equivalent to any of the other actors. Figure 7.3 is the same as Figure 7.2 except that there is a self-loop on actor 4, since this self-loop is not on actor 3 they are no longer structurally equivalent and the only equivalent actors are 1 and 2.

Figure 7.4 is a multirelational example. In relation R1 actors 1 and 2 are structurally equivalent and so are actors 3,4 and 5. However in relations R2 and R3 1 and 2 are structurally equivalent and so are 3 and 5 but 4 is not structurally equivalent to any other actor in either relation. It follows that the structurally equivalent actors are 1 and 2 as one pair and 4 and 5 as another pair.

Another way of thinking about structural equivalence is that if we remove the labels that identify two structurally equivalent actors, i and j say, on a diagram then it will no longer be possible to tell which was which. This is because they have exactly the same pattern of relationships over all relations. If we look back at Figure 7.1 and remove the labels 3 and 5 then we have no way of knowing which label belongs to which vertex. This would not be the case if labels 2 and 3 were removed, we know that the actor of degree 4 is 2 and the one of degree 2 is 3. A consequence of this is that structurally equivalent actors are identical with respect to any structural property. They have the same degree, the same centrality, they are on the same number of cycles etcetera. They are truly substitutable for each other.

To extend the definition to valued data we simply insist that the identical connections to other actors have identical values. If in Figure 7.2 actors 1 and 2 are structurally equivalent and the edge (1,3) has a value of 5.0 then the edge (2,3) must have a value 5.0, furthermore if the edge (1,2) has a value of 7.0 then so must the edge (2,1).

 It should be noted that some authors definitions of structural equivalence do not include parts 2 and 3 of the definition above, instead they ignore the relationships that potentially equivalent actors have between each other and with themselves. Whilst this simplifies the definition it does detract from our ideas of substitutability.

7.3 Profile Similarity

Our definition of structural equivalence is an ideal mathematical model and would rarely occur in real data. It does provide a theoretical framework on which we can base measures that try and capture the degree to which actors are structurally equivalent to each other. This will allow us to analyze data that contains measurement error, respondent variability and all the other inevitable inaccuracies associated with collecting real data. We first observe that structural equivalence is a local property, in as much that to determine whether a pair of actors are structurally equivalent we only need to know the set of actors to whom each are connected. If these sets are identical, with special consideration given to elements of the set which are the actors being compared, then they are structurally equivalent. The rows and columns of the adjacency matrix of the relation contain all the relevant information and can be used to determine the sets of alters and are known as profiles. The profile of actor i in an undirected single relation is simply the ith row (or column as this is the same) of the adjacency matrix. For directed data the profile is the ith row concatenated with the ith column. We illustrate this with some examples. In Figure 7.1 the profile of actor 3 is (1,1,0,0,0) this shows that actor 3 is adjacent to actors 1 and 2 and not adjacent to itself nor actors 4 and 5. Consider actor 2 in Figure 7.2. The second row of the adjacency matrix is (1,0,1,1,0) and the second column is (1,0,0,0,1). The fact that 2 is not connected to itself is recorded in the second entry of both the row and column vectors, that is this value has been noted twice. The profile is therefore (1,0,1,1,0,1,0,0,0,1).

It is a simple matter to verify that the profile of actor 1 is (0,1,1,1,0,0,1,0,0,1). We can now apply the definition of structural equivalence to these. The first condition tells us to ignore the entries that pertain to the self-loops and to each other. The self-loop entry for actor 1 is the first element and for actor 2 the second. The entries pertaining to the interactions between the actors are for the actor 1 profile; the second entry (corresponding to the relationship from 1 to 2) and the seventh entry (corresponding to the relationship from 2 to 1) and for the actor 2 profile; the first entry (corresponding to the relation from 2 to 1) and the sixth entry (corresponding to the relation from 1 to 2). We therefore need to consider (0,1,1,1,0,0,1,0,0,1) for actor 1 and (1,0,1,1,0,1,0,0,0,1) for actor 2. These can therefore be reduced to (1,1,0,0,0,1) and (1,1,0,0,0,1) which show that condition 1 of structural equivalence is satisfied because they are identical. The second two conditions are easier to check. For condition 2 we need to make sure that the second entry for the actor 1 profile is the same as the first entry for the actor 2 profile (or equivalently that the seventh entry of the actor 1 profile is the same as the sixth entry for the actor 2 profile). To check condition 3 make sure that the first entry in the actor 1 profile is the same as the second entry in the actor 2 profile. Since both these are true we conclude that the actors are structurally equivalent.

If the two profiles compared in this way are not identical then the actors are not structurally equivalent. It would be useful to know how similar the two vectors are to each other and to do this we could use any of the standard measures for comparing vectors. These include, but are not limited to, matches, correlation and Euclidean distance. One advantage of using the existing comparison methods for vectors is that they can be applied to valued data. When we compare two profile vectors we have to make sure that we meet all three conditions of structural equivalence. Suppose that we are going to use matching to compare the profile of row i with the profile of row j. For each element except the ith and jth entry in each row or column that makes up the profile we match the corresponding element in each vector. We then match the ith entry in row i with the jth entry in row j and the jth entry in row i with the ith entry in row j repeating the process for the corresponding column entries. This process is known as reciprocal swapping and is applied regardless of the method of comparing vectors. The following example illustrates how the process works on some valued data.

As an example consider two relations 'like' and 'talks to' on 8 actors. Each actor was asked to rate how much they liked the other on a scale of 1 to 10, an observer recorded how long (in hours) they spoke to each other over a 2 week period. The first matrix will not necessarily be symmetric but the second will be. It follows that the profile vectors will have 24 entries, 16 from the first matrix (the actor's row and column) and 8 from the second (the actor's row). Let us compare the profiles of the actor corresponding to row 3 with the one corresponding to row 7. Suppose the row 3 profile is (2,6,4,3,7,3,2,1,2,9,4,8,3,2,8,9,3,4,1,4,6,1,3,8) and the row 7 profile is 

(1,6,3,8,7,2,5,2,8,6,1,4,7,1,5,2,1,7,2,3,4,9,6,1). The numbers in bold are those that will be part of the swapping procedure. 

The following shows which elements to compare in the calculation of structural equivalence based upon profiles. 

(2,6,4,3,7,3,2,1,2,9,4,8,3,2,3,9,3,4,1,4,6,1,3,8)

(1,6,3,8,7,2,5,2,8,6,2,4,7,1,5,2,1,7,2,3,4,9,6,1).

As already stated there are a number of possible measures of similarity that we could use. We shall restrict our attention to the three already mentioned. Correlation is the standard Pearson correlation and we shall assume that the reader is familiar with the technique. Matches is the proportion of exact matches between the profiles. In the profiles above there are just 2 matches out of a possible 24 and so the measure will yield a profile similarity score of 1/12 which is equal to 0.083. The Euclidean distance treats each profile as representing a point in n-dimensional space and then calculating the distance between these points. At first sight this is difficult to imagine (we are in 24 dimensional space in the above example) but the distance is easy to calculate using a generalised form of Pythagoras's theorem. We calculate the square of the differences in the corresponding entries these are then all summed and the Euclidean distance is the square root of this total. Using the same two profiles as an example the first three differences are (2-1)=1, (6-6)=0 and (4-5)=-1, continuing we obtain a difference vector which is (1,0,-1,-5,0,1,-1,-1,-6,3,-1,4,-4,1,1,7,2,-3,-5,-1,2,-8,1,7). We now calculate the sum of squares of these differences, this comes to 316 taking the square root gives a Euclidean distance of 17.76. 

We then proceed to compare every pair of actors and from this information construct a structural equivalence matrix. The (i,j) entry in this matrix is the profile similarity measure of actor i with actor j. Regardless of how many relations are being considered and whether they were directed or not the structural equivalence matrix is a square symmetric matrix with the same number of rows (and columns) as the number of actors in the data set. It should be noted that if a standard statistical measure such as correlation is used we could not apply classical statistical inference on the results since the independence assumption has been violated. We can however treat the matrix as a proximity measure and apply classification and clustering techniques. This is necessary since one of the goals of positions is to place actors into mutually exclusive equivalence classes.

If we used Euclidean distance then a pair of structurally equivalent actors would yield a distance of zero. Values close to zero would indicate that the actors involved are nearly structurally equivalent. Clearly if we used correlation then structurally equivalent actors will have a correlation coefficient of one. However, in contrast to the Euclidean distance measure, it would also be possible for non-structurally equivalent actors to have a perfect correlation score. This would occur if one profile were a straight multiple of another, in some circumstances this would be desirable; we shall return to this topic later.

An Example In 1968 Sampson collected data on social relations in a contemporary isolated American monastery. Towards the end of his study there was a major crisis, resulting in a number of members being expelled or resigning. Sampson defined four sorts of relation: Affect, Esteem, Influence and Sanction. White, Boorman and Breiger (1976) report these matrices for the period just before the dispute. We shall consider just the Esteem relation which we split into two relations of Esteem and Diesteem. Each noviate ranked the other ranks giving his top three choices for that relation. In all rankings 3 is the highest or first choice and 1 the lowest; ties and no choices were permissible.  The matrices are as follows:

Esteem

                                   1 1 1 1 1 1 1 1 1

                 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

                 R B A B P L V W J G H B M A A B E S

                 - - - - - - - - - - - - - - - - - -

  1    ROMULAND  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  2 BONAVENTURE  0 0 1 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0

  3     AMBROSE  0 0 0 0 3 0 2 0 1 0 0 0 0 0 0 0 0 0

  4    BERTHOLD  0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0

  5       PETER  2 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0

  6       LOUIS  0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  7      VICTOR  0 1 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0

  8     WINFRID  0 0 0 0 0 0 0 0 3 2 1 0 0 0 0 0 0 0

  9        JOHN  0 1 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0

 10     GREGORY  0 1 0 0 0 0 2 0 3 0 0 0 0 0 0 0 0 0

 11        HUGH  0 0 0 0 0 0 0 1 3 2 0 2 0 0 0 0 0 0

 12    BONIFACE  0 0 0 0 0 0 0 0 1 3 2 0 0 0 0 0 0 0

 13        MARK  0 0 0 0 0 0 0 1 0 3 0 1 0 2 0 0 0 0

 14      ALBERT  0 0 0 0 0 0 0 1 0 3 0 2 2 0 0 0 0 0

 15       AMAND  0 3 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0

 16       BASIL  0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 1 1

 17       ELIAS  0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 2 0 3

 18  SIMPLICIUS  0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 3 1 0

Disesteem

                                   1 1 1 1 1 1 1 1 1

                 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

                 R B A B P L V W J G H B M A A B E S

                 - - - - - - - - - - - - - - - - - -

  1    ROMULAND  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  2 BONAVENTURE  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 2

  3     AMBROSE  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 2

  4    BERTHOLD  0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 2 2 0

  5       PETER  0 0 0 0 0 0 0 0 2 3 1 0 0 0 0 0 0 0

  6       LOUIS  0 0 0 0 0 0 0 0 1 3 0 0 0 1 0 2 0 0

  7      VICTOR  0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 3

  8     WINFRID  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  9        JOHN  0 0 0 0 0 0 0 0 0 2 0 0 3 0 0 1 0 0

 10     GREGORY  0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 2 0 0

 11        HUGH  0 0 0 0 2 2 0 0 0 0 0 0 0 0 3 0 1 1

 12    BONIFACE  0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 2 1 1

 13        MARK  0 0 0 3 2 0 2 0 0 0 0 0 0 0 0 2 1 0

 14      ALBERT  0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 2 2 1

 15       AMAND  0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 1 0 0

 16       BASIL  0 0 0 2 3 0 0 0 0 1 0 0 0 0 0 0 0 0

 17       ELIAS  0 0 0 3 2 0 1 0 0 0 0 0 0 0 0 0 0 0

18 SIMPLICIUS  1 0 0 2 2 0 3 0 0 0 0 0 0 0 0 0 0 0

Shortly after this data was collected Gregory, Basil, Elias and Simplicius were expelled. Almost immediately John departed voluntarily. A few days later Hugh, Boniface, Mark and Albert left, and within a week Victor and Amand departed. One month later Romuland also left. Sampson grouped the monks and then named the groups as follows:

{Winifrid, John, Gregory, Hugh, Boniface, Mark, Albert} The Young Turks.

{Bonaventure, Ambrose, Berthold, Peter, Louis} The Loyal Opposition

{Basil, Elias, Simplicius} The Outcasts

{Romuland, Victor, Amand} Indeterminate. 

The following structural equivalence matrix was obtained when the Esteem and Disesteem matrices were submitted to the profile similarity routine in UCINET. The data is not symmetric so the profiles use both the rows and columns, since this can be achieved by placing the transpose of a matrix as a new relation and then only taking the rows this is often referred to as 'including the transposes'. Euclidean distances were selected as the choice for measuring the amount of structural equivalence between the profiles. The distances have been rounded up to the nearest whole number.

               1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18

              RO BO AM BE PE LO VI WI JO GR HU BO MA AL AM BA EL SI

              -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

    ROMULAND   0  7  7  8 11  7  8  5  9 10  7  7  8  7  7  9  8  8

 BONAVENTURE   7  0  5  8 12  8  7  8 10 12  9  8  9  8  9 11 10 10

     AMBROSE   7  5  0  9 12  9  7  7 10 11  8  8 10  8  9 10 10 10

    BERTHOLD   8  8  9  0 10 10  9 10 11 12 11 10  9 10 10 10 10 11

       PETER  11 12 12 10  0 10 12 12 13 13 12 12 13 13 11 12 12 13

       LOUIS   7  8  9 10 10  0 10  8 10 12 10  9 10  9  7 10 10 10

      VICTOR   8  7  7  9 12 10  0  8 11 12 10  9 11  9 10 11 10  9

     WINFRID   5  8  7 10 12  8  8  0  8  9  6  5  8  7  8  8  9  9

        JOHN   9 10 10 11 13 10 11  8  0 10 10 10 11 10  9 11 11 11

     GREGORY  10 12 11 12 13 12 12  9 10  0  9  9 11 10 11  9 12 12

        HUGH   7  9  8 11 12 10 10  6 10  9  0  5  9  7  9  9 10  9

    BONIFACE   7  8  8 10 12  9  9  5 10  9  5  0  7  5  9  9  9  9

        MARK   8  9 10  9 13 10 11  8 11 11  9  7  0  6  9  9  9  9

      ALBERT   7  8  8 10 13  9  9  7 10 10  7  5  6  0  9  9  9  9

       AMAND   7  9  9 10 11  7 10  8  9 11  9  9  9  9  0  9  9  9

       BASIL   9 11 10 10 12 10 11  8 11  9  9  9  9  9  9  0  7  9

       ELIAS   8 10 10 10 12 10 10  9 11 12 10  9  9  9  9  7  0  5

  SIMPLICIUS   8 10 10 11 13 10  9  9 11 12  9  9  9  9  9  9  5  0

Since we used Euclidean distance a value of zero would indicate perfect structural equivalence. The only zero values are on the diagonal (actors are structurally equivalent to themselves) and so no two actors are perfectly structurally equivalent. The smallest values are 5 so that the most similar actors are pairs such as Bonaventure and Ambrose or Albert and Boniface. The least similar actors have a score of 13, for example Peter and John. To obtain some form of structurally equivalent groups we can submit this matrix to either a multidimensional scaling routine or an hierarchical clustering method. Figure 7.4 is the dendrogram associated with a single-link clustering of the structural equivalence matrix given above. The following groupings are obtained from this clustering at the level 8.674.

{Bonaventure, Ambrose, Berthold, Victor}

{Romuland, Winfrid, Hugh, Boniface, Mark, Albert}

{Louis, Amand}

{Basil, Elias, Simplicius} 

Peter, John and Gregory are each singletons and have not been taken into any clusters at this level. Each group is consistent with Sampson's assignment in as much as none of the members of the three major groupings are placed together.

It also has to be remembered that this is an analysis of just one pair of the relations and so is not as rich in data as taking all the relations.
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